Lective 2

- Update on enrollment
- More relaxed environment
- First half in person, the second half remotely

1. Multi-armed bandits
1)- Indrodueed by william R. Thomson in 1933.

- Name comes from 1950 by Mosteller \& Bush studying animal learning

2) Become popular in different applications.

- adaptive experimental design (recognized by US Food \& Drug Administration)
- new recommendation
- dynamic pricing.
- ad placement \rightarrow e.g.
3). A simple example \& a naive approach.

$$
\begin{aligned}
& r\left(a_{1}\right) \sim N\left(\mu_{1}, 1\right) \\
& r\left(a_{2}\right) \sim N\left(\mu_{2}, 1\right)
\end{aligned}
$$

It costs me $\$ 1$ to pull the slot machine once I have $\$ 100$, what is the best strategy to maximize the total reward without knowing $\begin{array}{lll}\mu_{1} & 8 & \mu_{2}\end{array}$?

- Naive approach:
- Try $a_{1} 25$ times
- Try $a_{2} 25$ times
- Pull the one with urfher empinial means for the
- rest of 50 times.
- Why it is not optimal?
-when $\mu_{1}=10, \mu_{2}=-10$.
- when $u_{1}=1, \quad u_{2}=-0.9$
trade off btw exploration \& exploitation.
- A better Algorithm:

$$
-V C B: \quad U C B_{i}=\frac{s_{i}}{q_{i}}+\sqrt{\frac{2 \log \left(\frac{1}{i}\right)}{q_{i}}}
$$

- why it is better? When $\left|u_{1}-u_{2}\right|$ is large
- What theoretical guarantee do we have?
$-\mathbb{A}=\left\{a_{1}, \cdots, a_{k}\right\}$.
- reward of $a_{i}: X_{a_{i}} \sim \rho\left(X \mid \theta_{i}\right)$
- Horizon: total \# of pulls.
- policy: a mapping from the history data \rightarrow distribution is action space.

$$
h_{i-1} \rightarrow A_{i}
$$

- Goal: maximize $\mathbb{E}\left[\sum_{i=1}^{n} X_{A_{i}}\right]$
e.g. UCB: history data At the beginning of each round i, is summarized by $\left(s_{t-1}^{i}, q_{t-1}^{i}\right)_{i=1}^{k}$

$$
\begin{gathered}
A_{t}=\max _{i}\left\{\frac{s_{i-1}}{q_{i-1}}+\sqrt{\frac{\operatorname{sg}(\underline{l(s)})}{q_{i-1}}}\right\} \\
- \text { regret: } R_{n}=n \max _{a} \mu_{a}-\mathbb{E}\left[\sum_{i=1}^{n} X_{A_{i}}\right]
\end{gathered}
$$

$\Leftrightarrow \quad \min$ regret
\rightarrow Thy $2 \quad k$-armed 1-subgaussian band rt prob.
for \forall horizon n, if $\delta=\frac{1}{n^{2}}$, then

$$
R_{n}=n \max _{a \in A} \mu_{a}-\mathbb{E}\left[\sum_{t=1}^{n} x_{t}\right] \leqslant 3 \sum_{i=1}^{k} \Delta_{i}+\sum_{i=\Delta>0} \frac{16(\log (n)}{\Delta_{i}}
$$

(whee $\Delta_{i}=\mu_{i}-\max _{a \rightarrow A} \mu_{a}$)

High-level idea: $\quad W L O G, \mu_{1}$ is the optimal arm

- when the regret 20 ? when suboptind arm $i>1$ will be soledel
selected at least one of them happens.

1) $U C B_{:}(t-1) \geqslant M_{*} \rightarrow$ ben tais happens sufficiently la ge, vCR: $\rightarrow u_{i}<M_{*}$, mad then it wand apo.
2) $U\left(B_{i x(t-1)}<M_{*} \rightarrow\right.$ tars will multikely happen b / C $U C B$ is to nab of i^{-4}-ta are.

It happens when $\cup C B ; \supset \cup C B$.
(1) $U C B_{1}>\mu_{1} \leftarrow$ thus happens w.p. 1-d
$U C B_{i}>U C B_{1}>M_{1}$
\rightarrow why the fo of times this will happen has an upper bd?
$U C B_{i} \rightarrow \mu_{i}<\mu_{1} \rightarrow X$ it an explicit upper od.
(2) $U C B_{1}<M_{1} \leftarrow$ this happens w.p. $\frac{d}{2}$
"good event" TheVCB value of the optimal arm is always $>n$.

$$
G_{G_{i}}^{\text {"good event" }}=\left\{\mu_{1}<\min _{\text {t } \in[n]} U C B_{1}(t, \delta)\right\} \cap\{\underbrace{\hat{\mu}_{n_{i}}}_{\text {The empirical mean of th arm with } u_{i}}+\sqrt{\frac{2}{u_{i}} \log \left(\frac{1}{\delta}\right)}<\mu_{1}\}
$$

u_{i} to be determined later.
© Key pt: exploring fth arm u_{i} times, Pts UCB is after v_{i} palls of smaller then the smallest VCB for optimal arm. i therm, its UCB value $\subset M_{1}$

We will show two things:
1). If $\mathrm{G}_{\text {: }}$ occurs, then arm i will be played at most u_{i} tees : $T_{i}(n) \leqslant u_{i}$
2). G_{i}^{c} occurs with low prob. $\mathbb{P}\left(G_{i}^{c}\right) \leq n \delta+e^{-\frac{u_{i} c^{2} D_{i}^{2}}{2}}$ holds for $\forall u_{i}, c \in(0,1)$

$$
\begin{aligned}
\Rightarrow \mathbb{E}\left[T_{i}(u)\right] & =\mathbb{E}\left[T_{i}(u) \mid G_{i}(n)\right]+\mathbb{E}\left[T_{i(n) \mid} \mid G_{i}^{f}(u)\right] \\
& \leqslant u_{i}+\mathbb{P}\left(G_{i}^{f}(u)\right) n \\
& \leqslant u_{i}+\left(n \delta+e^{-\frac{u_{i} c^{2} \Delta_{i}^{2}}{2}}\right)
\end{aligned}
$$

pug n $u_{i}=\left\lceil\frac{2 \log (1 / \delta)}{(1-c)^{2} \Delta_{i}^{2}}\right\rceil \quad$ (if $u_{i} \geqslant n, ~ \circledast$ always holds) $\& \delta=\frac{1}{n^{2}}$

$$
\Rightarrow \mathbb{E}\left[T_{i}(n)\right]=\left[\frac{2 \log \left(n^{2}\right)}{(1-c)^{2} \Delta_{i}^{2}}\right]+1+\eta^{1-2 c^{2} /(1-c)^{2}}
$$

plug in $c=\frac{1}{2}$

$$
\begin{aligned}
\Rightarrow & \mathbb{E}\left[T_{i}(n)\right] \leqslant 3+\frac{16(\log (n)}{\Delta_{i}^{2}} \\
& R_{n}=\sum_{i} \Delta_{i} \mathbb{E}\left[T_{i}(n)\right]=33 \Delta_{i}+\frac{16 \log (n)}{\Delta_{i}}
\end{aligned}
$$

- proof of V
- prose of 2).
- Intro of σ-subguassian
- generalization

Pf \circ (1): Contraction: If i-th arm is pulled u_{i} times, then $V\left(B_{i}<M_{1}\right.$, it wont be palled anymore

$$
\begin{aligned}
& \text { If } T_{i}(n)>u_{i} \Rightarrow \sqrt{\exists t} / T_{i}(t-1)=u_{i}, A_{t}=i \\
& \Rightarrow U\left(B_{i}(t-1, \delta)=\hat{u} f(t-1)+\sqrt{\frac{2 \log \left(\frac{1}{\delta}\right)}{T_{i i t t}}}\right. \\
& =\hat{\mu}_{u_{i}}+\sqrt{\frac{2 \log (1 / 2)}{u_{i}}} \\
& <\mu_{1}<U C B_{1}(t-1, \delta) \\
& \Rightarrow A_{t}=\operatorname{argararg} U C B_{j}(t-1, \delta) \neq i \text { < }
\end{aligned}
$$

of of 2)

$$
G_{i}^{c}=\left\{\tilde{A}_{1} \geqslant \min _{t \in t i n} U C B_{1}\left(t_{1} \delta\right)\right\} \cup\{\hat{\mu}_{n_{i} i} \underbrace{}_{B} \geqslant \mu_{1}\} .
$$

G at least one of UCD, value is less the M,

$$
\begin{aligned}
G A & \leqslant \mathbb{P}\left(\bigcup_{s=[n]}\left\{\mu_{1} \geqslant \hat{\mu}_{1 s}+\sqrt{\frac{2 \cos (1 / s)}{s}}\right\}\right) \\
& \leqslant \sum_{s=1}^{n} \mathbb{P}\left(\mu_{1} 3 \hat{\mu}_{s s}+\sqrt{\frac{2 \cos (1 / s)}{s}}\right)
\end{aligned}
$$

$\leq n \delta$
when firstarm follows 1-sub guassian, This prob $\leqslant \delta$

$$
B=\mathbb{P}\left(\hat{M}_{i u_{i}}+\sqrt{ } \quad \geqslant u_{i}\right)
$$

want the empirical mean close to true ancon w.h. p

$$
\leq \mathbb{P}\left(\hat{\mu}_{i m_{i}-m_{i}} \geqslant c \Delta i\right)
$$

$$
u_{i} \text { la ge mong sit. }<(1-c)\left(m_{i}-u_{i}\right)
$$

$\leq e^{-\frac{u_{c} c^{2} c_{i}^{2}}{2}} \Leftarrow$ when the i-th corm follows 1 -sub grassican. The prob has tars upper bd.

$$
\left(\hat{\mu}_{i n i}-\mu_{i} \text { is } \frac{1}{\sqrt{\mu_{i}}}-\text { subgnassian }\right)
$$

$$
\mathbb{P}\left(G_{i}^{c}\right) \leq n \delta+e^{-\frac{u_{i} c^{2} \Delta_{i}^{2}}{2}}
$$

Formal Def
σ-subguassian: $\Longleftrightarrow \mathbb{E}\left[e^{\lambda x}\right] \leq e^{\frac{\lambda^{2} \sigma^{2}}{2}}$ for $\forall \lambda \in \mathbb{R}$

$$
P \mathbb{P}(x \geqslant \varepsilon) \leqslant e^{-\frac{\varepsilon^{2}}{2 \sigma^{2}}}, \mathbb{P}(x \leqslant-\varepsilon) \leq e^{-\frac{\varepsilon^{2}}{4^{2}}}
$$

useful ireq.
Property of σ-subguassian:
(1) $V[x] \leq \sigma^{2}$,
(2) $C X$ is $\mid C 1 \sigma$ - subguassion
(3) If x_{1}, x_{2} are σ_{1}, σ_{2} - sub guassian
then $x_{1}+x_{2}$ is $\sqrt{\sigma_{1}^{2}+r_{2}^{2}}$-subguassian
Lemma: Define $\left\{x_{i}\right\}_{i=1}^{n}$ are i.i.d with $\mathbb{E}\left[x_{i}\right]=\mu$,
If $x_{i}-\mu$ is σ-subguassian, then
$\hat{M}-M=\frac{1}{n} \sum_{i=1}^{n} X_{i}-M$ is $\hat{\theta}=\frac{\sigma}{\sqrt{n}}$-subgnassian

$$
8 \mathbb{P}(x \geqslant \varepsilon) \leqslant e^{-\frac{\varepsilon^{2} n}{2 \sigma^{2}}} \quad \& \mathbb{P}(x \leqslant-\varepsilon) \leqslant e^{-\frac{\varepsilon^{2} n}{20^{2}}}
$$

Thu $2 \quad K$-armed 1-sxbgaussian band st prob.
for \forall horizon n, if $\delta=\frac{1}{n^{2}}$, then

$$
R_{n}=8 \sqrt{k n \log (n)}+3 \sum_{i} \Delta_{i}
$$

pf: $\quad R_{n}=\sum_{i} \Delta_{i} \mathbb{E}\left[T_{i}(n)\right]$

$$
\begin{aligned}
& =\sum_{i: \Delta_{i}<\Delta} \Delta_{i} \mathbb{E}\left[T_{i}(n)\right]+\sum_{i: \Delta_{i}>\Delta} 3 \Delta_{i}+\frac{16 \operatorname{gg}(n)}{\Delta_{j}} \\
& =n \Delta+\frac{k 16 \log (n)}{\Delta}+\sum_{0_{i}>\Delta} 3 \Delta_{i} \\
& \leqslant 8 \sqrt{k n \log (n)}+3 \sum_{i} \Delta_{i}
\end{aligned}
$$

How to obtain the UCB for σ-subguassian

$$
\begin{aligned}
& \mathbb{P}\left(M>\hat{M}_{n}+C\right) \geqslant \delta \\
& \mathbb{P}\left(\hat{M}_{n}-M<-c\right) \leqslant e^{-\frac{n c^{2}}{2 \sigma^{2}}}=\delta \Rightarrow \frac{n c^{2}}{2 \sigma^{2}}=\log \left(\frac{1}{\delta}\right) \\
& \quad \Rightarrow C=\sqrt{\frac{2 \sigma^{2} \log \left(\frac{1}{\delta}\right)}{n}}, \delta \text { smaller } \rightarrow \text { more exploit }
\end{aligned}
$$

UCB Argo
$U C B ;(t-1, d)=\left\{\begin{array}{l}\infty \\ \underbrace{\hat{\mu}_{i}(t-1)}_{\kappa}+\underbrace{\tau}_{\frac{2 \log (t)}{T_{i}(t-1)}}\end{array}\right.$
Empirical mean tod upper bound for I-arbguassian
HO: $\operatorname{Tr} y V C B$ on $N\left(\mu_{1}, \sigma\right), N\left(\mu_{2}, \sigma\right)$ for different $\Delta=\mu_{1}-\mu_{2}$ $\operatorname{Bon}\left(p_{1}\right), \operatorname{Bon}\left(p_{c}\right)$. for different $\Delta=p_{1}-p_{2}$.

