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Abstract. This paper presents a particle-based optimization method designed for ad-
dressing minimization problems with equality constraints, particularly in cases where the
loss function exhibits non-differentiability or non-convexity. The proposed method com-
bines components from consensus-based optimization algorithm with a newly introduced
forcing term directed at the constraint set. A rigorous mean-field limit of the particle sys-
tem is derived, and the convergence of the mean-field limit to the constrained minimizer is
established. Additionally, we introduce a stable discretized algorithm and conduct various
numerical experiments to demonstrate the performance of the proposed method.

1. Introduction

In this paper, we are concerned with the following minimization problem withm equality
constraints,

min
v∈Rd

E(v)

s.t. g1(v) = 0, g2(v) = 0, . . . , gm(v) = 0.

The above optimization problems have widespread application across various domains. For
example, in supply chain optimization, equality constraints play a pivotal role in maintain-
ing a balance between demand and supply [26]; astronomers employ constrained opti-
mization to calculate spacecraft trajectories, adhering to the laws of physics and orbital
equations [8, 38]; in structural design, engineers optimize dimensions of beams, columns,
or trusses while ensuring that the structural equilibrium equations are satisfied as equality
constraints [20]. In this paper we deal with the cases when the objective function can be
non-convex and non-differentiable.
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Traditional algorithms like the Lagrange Multipliers [32] and the Alternating Direction
Method of Multipliers (ADMM) [37] lack guarantees of converging to the global constrained
minimizer when dealing with non-convex or non-differentiable loss functions E(v). A new
framework is required to effectively handle such cases, and recently, a class of gradient-free
methods called consensus-based optimization (CBO) methods [5, 29, 36] have emerged
as promising approaches for handling non-convex and non-differentiable loss functions.
Motivated by the well-known Laplace’s principle [3, 10, 27], they are decentralized and
gradient-free algorithms that leverage the power of information sharing and cooperation
among individual particles. However, it is important to highlight that much of the existing
work has focused on the unconstrained case such as [5, 6, 9, 15, 17, 18, 22, 23, 24, 25, 30,
31, 34]. We refer the readers to survey articles [7, 21, 35] for a more detailed and complete
summary.

Limited work has been done for the constrained case. The primary challenge lies in
reconciling the CBO model’s tendency to drive agents towards the global minimizer with
the need for agents to remain within the constraint set and converge to the constrained
minimizer. Currently, there are mainly two approaches. One involves projection onto the
hypersurface [12, 13, 14]. However, this method is restricted to sphere constraints, and
its applicability to general constraints or multiple equality constraints remains unclear.
Another method introduces constraints as a penalized term in the objective function [4,
7], transforming it into an unconstrained problem for CBO. However, the convergence is
sensitive to the landscape of the objective function and the penalization constant, which
makes it difficult to achieve high accuracy.

In this paper, we introduce a third strategy for constrained CBO along with convergence
analysis and numerical experiments. Instead of performing projection onto the constraint
set or adding penalty terms, we propose a novel approach that combines the classical uncon-
strained CBO algorithm with gradient descent on the function G(v) =

∑m
i=1 g

2
i (v), serving

as a forcing term to the constraint set. Importantly, we do not require the differentiability
of the target function E and only need a mild differentiability condition on G. Compared
with the other two constrained CBO methods, our method applies to general equality
constraints, achieves faster convergence, and has consistently more stable performance as
shown in Figures 1 and 2.

1.1. Contributions. Our main contributions are three folds. Firstly, we introduce a new
CBO-based method for solving constrained optimization problems, with possibly non-
convex and non-differentiable objective functions. This method can accommodate a wide
range of equality constraints, including the ability to handle multiple constraints con-
currently. Secondly, we provide rigorous theoretical guarantees for the continuous-in-time
model of the proposed method. Specifically, we establish the mean-field limit of the method
and conduct a thorough analysis of its convergence behavior within this limit. Thirdly,
we present a stable discretized algorithm designed to approximate the dynamics of the
continuous-in-time model efficiently. Notably, this algorithm handles the stiff term of or-
der O(ϵ−1) without requiring the time step to approach zero as ϵ tends to zero.
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1.2. Organizations. The paper is structured as follows. Section 2 provides an introduc-
tion to the continuous-in-time stochastic differential equations, which serves as the model
for the proposed method. Following that, Section 3 studies the well-posedness of the intro-
duced SDEs and explores their mean-field limit. In Section 4, we analyze the convergence
properties of the method by establishing the long-time behavior of the mean-field limit.
This includes demonstrating, under appropriate assumptions, the convergence of the mean-
field limit model to the constrained minimizer. Section 5 details the implementation of the
algorithm, accompanied by a series of numerical experiments showcasing its performance.
Finally, Section 6 offers a comprehensive summary of the findings presented in this paper.

1.3. Notations. We use Ckb (Rd) and Ckc (Rd) to denote the space of k-times continuous dif-
ferentiable functions defined on Rd that are bounded and compactly supported respectively.
The space C2∗ is defined as

C2∗(Rd) :=
{
ϕ ∈ C2(Rd)| |∂xk

ϕ(x)| ≤ C(1+|xk|) and sup
x∈Rd

|∂xkxk
ϕ(x)| <∞ for all k = 1, 2, ..., d

}
.

When X and Y are topological spaces, we use C(X, Y ) to denote the space of continuous
functions mapping from X to Y . When X is a topological space, P(X) denotes the space
of all the Borel probability measure, which is equipped with the Levy-Prokhorov metric.
Given 1 ≤ p < ∞, Pp(Rd) is the collection of all probability measures on Rd with finite
p-th moment, which is equipped with the Wasserstein-p distance, denoted by Wp(·, ·). If
ρ is a probability measure, ρ⊗N denotes the probability space obtained by coupling ρ
independently N times.
∥ ·∥p denotes the usual lp vector norm in the Euclidean space, ∥ ·∥L1ρ denotes L

1 norm of
a function with respect to ρ and | · | denotes the absolute value of a real number. B∞(x, r)
denotes the closed l∞ ball centered at x with radius r. Id denotes the d×d identity matrix.
When u is a vector, diag(u) denotes the diagonal matrix with u being the diagonal.

Throughout this paper, we use the symbols C and L to represent generic positive uniform
constants. It is important to note that these constants may take on different values in
different sections or parts of this paper.

2. The dynamics of the constrained consensus-based optimization
algorithm

In this section, we carry out the continuous-in-time dynamics of our method. The
practical discretized algorithm will be introduced in Section 5.

Consider the following constrained optimization problem,

min
v∈Rd

E(v)

s.t. g1(v) = 0, g2(v) = 0, . . . , gm(v) = 0.
(1)

Here, we require the function gi(x) is first-order differentiable and assume that v∗ is the
unique solution to the optimization problem (1). It is noteworthy that Problem (1) can be
reformulated equivalently as follows:
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min
v∈Rd

E(v)

s.t. G(v) = 0,
(2)

where G(v) =
∑m

i=1 g
2
i (v). Our method will be based on formulation (2).

To start with, we take N particles V 1,N , V 2,N , ..., V N,N , which are independently sampled
from a common initial law ρ0 at initialization. Here we use V i,N

t for the location of the
i-th particle at time t. Now we introduce the following empirical mean measure:

dρ̂Nt (v) =
1

N

N∑
i=1

δV i,N
t

(v).

The goal of the dynamics is to encourage the measure dρ̂Nt to converge to the measure
δv∗ , which is the Dirac measure at the solution of the constrained optimization problem
(2). Now we propose the dynamics of the i-th particle, which follows the below stochastic
differential equation:

dV i,N
t = −λ

(
V i,N
t − vα

(
ρ̂Nt
))
dt− 1

ϵ
∇G

(
V i,N
t

)
dt+ σDi,N

t dBi,N
t ,

V i,N
0 ∼ ρ0,

(3)

where

vα(ρ̂
N
t ) =

∫
v · ωα(v)

∥ωα∥L1(ρ̂Nt )

dρ̂Nt . (4)

The dynamics are driven by three distinct terms. The first and third terms are inherited
from classical consensus-based optimization methods, while the second term is crafted as
a forcing term to enforce the constraint. We will now explain each of them in sequence.

The first drift term −λ
(
V i,N
t − vα(ρ̂t)

)
dt is formulated to guide all particles toward the

consensus point vα(ρ̂
N
t ). This consensus point is strategically chosen as a location where the

function is likely to achieve a small value. It is defined through a Gibbs-type distribution
(4) where the weight ωα is defined as

ωα(v) = e−αE(v).

Here λ controls the force magnitude driving the particles towards the consensus point
vα(ρ̂t).
The choice of the consensus point is inspired by the well-known Laplace’s principle

[3, 10, 27]. According to this principle, for any absolutely continuous probability measure
ρ on Rd, one has

lim
α→∞

(
− 1

α
log
( ∫

ωα(v) dρ(v)
))

= inf
v∈supp(ρ)

E(v).

It is expected that the consensus point vα(ρ̂
N
t ) serves as a reasonable approximation of

argmini=1,...,N E(V
i,N
t ) when α is sufficiently large. Consequently, the particles are gathered

to a location where E(v) attains a small value.
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The diffusion term σDi,N
t dBi,N

t encourages particles to explore the landscape of E(v),
where Di,N

t is a d× d matrix function that determines the way in which particles explore
the landscape and {Bi,N

t }i=1,...,N are independent Wiener processes. There are different

choices for the matrix function Di,N
t . One option is isotropic exploration [29], in which

Di,N
t is defined as:

Di,N
t = ∥V i,N

t − vα
(
ρ̂Nt
)
∥2Id, (5)

where the norm used above is the usual L2 norm of vectors in Rd. Another option is
anisotropic exploration, first introduced in [6] to address the curse of dimensionality, in

which Di,N
t reads

Di,N
t = diag

(
V i,N
t − vα

(
ρ̂Nt
))
. (6)

In this paper, we use (6) for its advantage in high-dimensional scenarios as illustrated in
[6, 14, 16].

The two terms introduced above are consistent with classical Consensus-Based Opti-
mization (CBO) methods. Now we introduce a third term:

−1

ϵ
∇G

(
V i,N
t

)
dt,

which addresses the constraint {G = 0}. Since 0 is the minimum of the non-negative func-
tion G(v), finding the constraint {G(v) = 0} is the same as minimizing G(v). Therefore,
we propose the third term as a gradient descent of G(v), allowing G(v) to be minimized
during the algorithm’s progression. Here ϵ > 0 is a parameter that controls the magnitude
of this term. When ϵ is small, this term will encourage particles to concentrate around
{G = 0}.
Before we proceed to the theoretical analysis of the model, we first present a comparison

result in Figures 1 and 2 to illustrate the superior performance of the proposed interacting
particle system (3) compared to the projected CBO system [12] and the penalized CBO
system [4]. We defer algorithmic formulation to Section 5, and details of the experiments
to Appendix H.1, respectively.

We conducted tests on a two-dimensional Ackley function (shown in Figure 1), which is
a highly nonconvex optimization problem with constraints on a circular domain or para-
bolic curve. The success rate of finding the unconstrained minimizer v∗ and the averaged
distance to v∗ over 100 simulations are presented in the table shown in Figure 1. Addi-
tionally, the evolution of the averaged distance to the true minimizer is depicted in Figure
2. Our method achieves a 100% success rate in finding the unconstrained minimizer and
demonstrates the fastest convergence rate in all experiments. The projected CBO per-
forms similarly to our method when the constraint is a circle, but it is not applicable to
parabolic curves. In contrast, the Penalized CBO exhibits a significantly lower success rate
due to two main reasons: First, when the constrained minimizer is not a local minimizer of
the objective function, the global minimizer v∗p of the penalized objective function usually
differs from the constrained minimizer v∗. Second, although it is possible to increase the
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(a) Ackley function. (b) The success rate and averaged Euclidean distance to the
constrained minimizer.

Figure 1. Objective function and success rate of three constrained CBO methods.
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(a) Constrained on Sphere: The
constrained minimizer is the same
as the unconstrained minimizer.
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strained minimizer.

Figure 2. The averaged distance to the true constrained minimizer over 100
simulations.

penalty sufficiently to reduce the distance ∥v∗p − v∗∥2, the landscape is dominated by the
penalized term, making the objective function resemble a minor perturbation around the
penalty. Consequently, it becomes more challenging for the optimization method to locate
the global minimizer, and leads to a longer time for CBO to converge.

3. Well-posedness and Mean-field limit

In this section we study some theoretical properties of the particle system described
by Equation (3). We consider anisotropic diffusion (6) in both Section 3 and Section 4.
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Consequently, the system defined by Equation (3) transforms into the following form:

dV i,N
t = −λ

(
V i,N
t − vα

(
ρ̂Nt
))
dt− 1

ϵ
∇G

(
V i,N
t

)
dt+ σdiag

(
V i,N
t − vα

(
ρ̂Nt
))

dBi,N
t ,

V i,N
0 ∼ ρ0,

(7)

where i = 1, ..., N .
When the number of particles N is large enough, one could study the mean-field limit

as N → ∞. This limit yields an equation that characterizes the macroscopic behavior of
the particles, specifically their density distribution. The investigation of the mean-field
equation reveals the long-term dynamics of the particle system, which is related to the
convergence of the particle system or the optimization method. However, prior to this
analysis in Section 4, it is necessary to establish the existence of the mean-field limit. In
this section, we establish the well-posedness of Equation (7), its mean-field limit, and the
well-posedness of the resultant mean-field model.

Throughout this section, we make the following assumptions.

Assumption 1. (1) The loss function E is bounded with inf E = E and sup E = E.
(2) There exist positive numbers L and C such that for ∀u, v ∈ Rd,

∥E(u)− E(v)∥2 ≤ L(∥u∥2 + ∥v∥2)∥u− v∥2,
E(u)− E ≤ C(1 + ∥u∥22),

(3) There exists L > 0 such that for ∀u, v ∈ Rd,

∥∇G(u)−∇G(v)∥2 ≤ L∥u− v∥2,

(4) There exists C > 0 such that for ∀u ∈ Rd,

∥∇G(u)∥2 ≤ C∥v∥2.

Briefly speaking, in Assumption 1 (1) and (2), we assume the loss function E is bounded,
locally Lipschitz and with at most quadratic growth. In Assumption 1 (3) and (4), we
assume the gradient of the function G is globally Lipschitz and with at most linear growth.

3.1. Well-posedness of the microscopic model. In this subsection, we establish the
well-posedness of the interacting particle system (7), as presented in the following theorem.

Theorem 3.1. For any N ∈ N, the stochastic differential equation (7) has a unique strong

solution
{
V i,N
t |t ≥ 0

}N

i=1
for any initial condition V i,N

0 satisfying E
[
∥V i,N

0 ∥22
]
<∞.

Proof. See Appendix A.1. □

3.2. The mean-field limit and its well-posedness. By letting the number of agents
N → ∞ in the model (7), the mean-field limit of the model is formally given by the
following SDE

dV̄t = −λ
(
V̄t − vα

(
ρt
))
dt− 1

ϵ
∇Gdt+ σdiag

(
V̄t − vα

(
ρt
))

dBt. (8)
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Then the corresponding Fokker-Planck equation is

∂tρt = λdiv

((
v − vα

(
ρt
)
+

1

ϵ
∇G

)
ρt

)
+
σ2

2

d∑
k=1

∂xkxk

((
v − vα

(
ρt
))2

k
ρt

)
. (9)

Next, we will prove the above equations (8), (9) are well-posed, and they model the mean-
field limit.

For the corresponding Fokker-Planck equation, we in particular study its weak solution,
which is defined as follows.

Definition 3.2. We say ρt ∈ C
(
[0, T ],P4

(
Rd
))

is a weak solution to (9) if

(i) The continuity in time is in C ′

b topology:〈
ϕ, dρtn

〉
→
〈
ϕ, dρt

〉
for ∀ϕ ∈ Cb

(
Rd
)
and tn → t.

(ii) One of the following two equivalent equations holds for ∀ϕ ∈ C2c
(
Rd
)
:

d

dt

〈
ϕ, dρt

〉
=− λ

〈(
v − vα

(
ρt
))
· ∇ϕ(v), dρt

〉
− 1

ϵ

〈
∇G(v) · ∇ϕ(v), dρt

〉
+
σ2

2

〈 d∑
k=1

(
v − vα

(
ρt
))2

k
∂kkϕ(v), dρt

〉
or

0 =
〈
ϕ, dϕt

〉
−
〈
ϕ, dρ0

〉
+ λ

∫ t

0

〈(
v − vα

(
ρτ
))
· ∇ϕ(v), dρτ

〉
dτ

+
1

ϵ

∫ t

0

〈
∇G(v) · ∇ϕ(v), dρτ

〉
dτ − σ2

2

∫ t

0

〈 d∑
k=1

(
v − vα

(
ρτ
))2

k
∂kkϕ(v), dρτ

〉
dτ.

Remark 1. In the Definition 3.2 (ii), the test function space is C2c (Rd). We could extend
C2c (Rd) to a larger space C2∗(Rd) as explained in Appendix C, which will be used in the proof
later. C2∗(Rd) is defined below.

C2∗(Rd)

:=
{
ϕ ∈ C2(Rd)| |∂kϕ(x)| ≤ C(1 + |xk|) and sup

x∈Rd

|∂kkϕ(x)| <∞ for all k = 1, 2, ..., d
}
.

In other words, if ρt ∈ C
(
[0, T ],P4

(
Rd
))

solves equation (9) in the weak sense as in

Definition 3.2, then the two equalities in Definition 3.2 will hold for any test function
ϕ ∈ C2∗

(
Rd
)
.

Now we state the well-posedness result of (8) and (9).

Theorem 3.3. Let E satisfy Assumption 1 and ρ0 ∈ P4

(
Rd
)
. Then there exists a unique

nonlinear process V̄ ∈ C
(
[0, T ],Rd

)
, T > 0 satisfying (8) with initial distribution V̄0 ∼ ρ0
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in the strong sense, and ρt = Law
(
V̄t
)
∈ C

(
[0, T ],P4

(
Rd
))

satisfies the corresponding

Fokker-Planck equation (9) in the weak sense with limt→0 ρt = ρ0.

Proof. See Appendix A.2. □

Then we present the result showing that (8), (9) indeed characterize the mean-field limit
of the particle system.

Theorem 3.4. Let E satisfy Assumption 1 and ρ0 ∈ P4

(
Rd
)
. For any N ≥ 2, assume

that
{(
V i,N
t

)}N
i=1

is the unique solution to (7) with ρ⊗N
0 distributed initial data

{
V i,N
0

}N
i=1

.

Then the limit (denoted by ρt) of the sequence
{
ρ̂Nt
}
N∈N, as N → ∞ exists. Moreover,

ρt is deterministic and it is the unique weak solution to the corresponding Fokker-Planck
equation (9) of the mean-field model.

Proof. Please see Appendix A.3. □

4. Convergence to the constrained minimizer in the mean-field limit

In this section, we will analyze the behavior of the weak solution of the Fokker-Planck
equation (9). Recall that v∗ is the unique solution of Problem (2). Our primary goal
is to establish a key result: under suitable assumptions and the selection of appropriate
parameters, the particles will concentrate around v∗ with arbitrary closeness. This confirms
the effectiveness of the method in the mean-field limit.

For simplicity and without loss of generality, we assume E(v∗) = 0. Throughout this
section, we use ρt to represent the solution of Equation (9) as defined in Definition 3.2.

4.1. Main Results. To study the convergence of ρt to v
∗, we define the following energy

functional

V
(
ρt
)
:=

1

2

∫
∥v − v∗∥22 dρt(v). (10)

The above defined quantity V
(
ρt
)
provides a measure of the distance between the distribu-

tion of the particles ρt and the Dirac measure at v∗, denoted as δv∗ . Specifically, we have
the relationship

2V
(
ρt
)
= W 2

2

(
ρt, δv∗

)
,

where W2

(
ρt, δv∗

)
denotes the Wasserstein-2 distance between ρt and δv∗ . The diminishing

behavior of V
(
ρt
)
indicates that ρt is approaching δv∗ , implying that particles are concen-

trating around v∗. In this paper, we establish the following main theorem concerning the
decay of V

(
ρt
)
.

Theorem 4.1. Suppose G and E are well-behaved. Fix any τ ∈ (0, 1) and parameters
λ, σ > 0 with 2λ > σ2. There exists a function I : R→ R such that for any error tolerance
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δ ∈
(
0,V(ρ0)

)
, as long as ρ0

(
B(v∗, r)

)
> 0 for all r > 0 and

∫
Gdρ0(v) ≤ I(δ), then one

can find α and ϵ so that

min
t∈[0,T ∗]

V
(
ρt
)
≤ δ, (11)

where

T ∗ =
1

(1− τ)(2λ− σ2)
log

(
V
(
ρ0
)

δ

)
. (12)

Furthermore, until V
(
ρt
)
reaches the prescribed accuracy δ, the following exponential decay

holds:

V
(
ρt
)
≤ V(ρ0) exp

(
− (1− τ)(2λ− σ2)t

)
. (13)

Remark 2. In the above theorem, the function I only depends on G, E and parameters
τ, λ, σ. It does not depend on δ. The choice of α, ϵ will depend on δ as described in (24)
and (70) respectively. Roughly speaking, when δ is fixed, we select a sufficiently large α,
and subsequently, based on this chosen α, we select a small enough ϵ. Additionally, it is
worth noting that the selection of λ and σ remains independent of the dimension d, as the
only requirement is 2λ > σ2. However, α will exhibit a logarithmic dependence on d as
illustrated in (24).

4.2. Assumption. In this subsection, we define clearly what it means by ”being well-
behaved”. G and E are well-behaved if the following Assumption 2 is satisfied. It is
worth noting that Assumption 2 in this section is independent of Assumption 1. In other
words, for the proofs in this section, Assumption 1 is not required.

Assumption 2. A. Assumptions on E:
(A1) E is bounded: E ≤ E ≤ E .
(A2) E is locally Hölder continuous around v∗, i.e. there exists r0 > 0 such that for

∀v1, v2 ∈ B∞(v∗, r0),

|E(v1)− E(v2)| ≤ C∥v1 − v2∥β∞
for some C ≥ 0 and β > 0.

B. Assumptions on G:

(B1)
〈
∇G(v), v − v∗

〉
≥ 0 holds for any v ∈ Rd.

(B2) G(v) ∈ C2∗
(
Rd
)
and there exists C > 0 such that G(v) ≤ C∥∇G(v)∥22 for ∀v ∈ Rd.

(B3) ∇G(v) ̸= 0 for ∀v ∈
{
G(v) ∈ (0, u0)

}
and

∫
G(v)∈(0,u0)

1
∥∇G(v)∥2 dv < ∞ for some

u0 > 0 small enough.

Remark 3. Assumption 2 (B1) is related to the convexity of function G but is less strin-
gent than the convexity condition. If it is not satisfied, similar to other gradient descent
algorithms, there is a possibility for some particles to get trapped in the local minimizers
v̂ of G, i.e. ∇g(v̂) = 0. Nevertheless, provided the function values E(v) at those local
minimizers of G do not fall below E(v∗), a condition attainable by adding a positive scalar
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multiple of G to E without altering the solution v∗, it won’t affect the convergence of the
consensus point to the constrained minimizer v∗, as evidenced in the experiments detailed
in Section 5.2.1, Figure 5. It is noteworthy that this slight adjustment on E(v) differs
from the penalization method outlined in [4]. Here, there is no necessity for the penalty
parameter to approach infinity, as the convergence is enforced through the dynamics rather
than penalization. The introduction of a positive scalar multiple of G to E is to avoid the
extreme case. Thus a mild penalization would suffice.

Assumption 2 (B2) is primarily technical in nature. Assumption 2 (B3) guarantees that
the gradient of G around the constraint {G = 0} does not vanish too rapidly.

C. Assumptions on the coupling of E and G: The following holds for ∀u ∈ [0, u0]
where u0 > 0 is a small constant.

(C1) There exist vu ∈ Rd, Eu ∈ R such that

vu = argmin
v∈{G(v)=u}

E(v) and Eu = E(vu).

Moreover, there exists a non-negative increasing function τ1(x) from R to R with
limx→0 τ1(x) = 0 such that

∥vu − v∗∥∞ ≤ τ1(u) and

∂B∞(vu, r) ∩ {v | G(v) = u
}
̸= ∅.

(C2) There exist η > 0, µ > 0, R0 > 0 and E∞ > 0 such that

∥v − vu∥∞ ≤
1

η

(
E(v)− Eu

)µ
for ∀v ∈ B∞(vu, R0

)
∩
{
G(v) = u

}
and

E∞ < E(v)− Eu
for ∀v ∈ B∞(vu, R0

)c ∩ {G(v) = u
}
.

Remark 4. The above Assumption 2 (C1) ensures the geometry of E on the set {G = u}
is similar among small enough u, i.e., on sets {G = u}, the constrained minimizers vu and
constrained minimums E(vu) are close among small enough values for u. To illustrate, if
this condition is not met, as depicted in Figure 3 (a), the desired constrained minimizer
v∗ (depicted as a solid green pentagon) is considerably distant from the minimizer vu on
a nearby level set {G = u} (depicted as a solid orange circle) for all sufficiently small u.
Consider an extreme case where we assume E(vu) is significantly smaller than E(v∗) for
all positive but sufficiently small u. Due to the nature of gradient descent on G for each
particle, which may not precisely enforce each particle to remain on the constraint {G = 0},
these particles will tend to remain in a neighborhood of {G = 0}. Consequently, numerous
particles will cluster around {G = u} for sufficiently small u, as illustrated in Figure 3
(a). Given that numerous particles are near vu, where the function value is significantly
small, the algorithm computes the consensus point around vu rather than v∗. Consequently,
the consensus point will gradually lead particles to concentrate around vu rather than v∗,
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(a) (b)

Figure 3. The blue curves represent function values on the constraint set {G = 0}
and the red curves on the level set {G = u}. Dashed lines represent corresponding
constraint sets. The green pentagon denotes the constrained minimizer v∗, and the
orange circle represents the minimizer vu on the nearby level set G = u. Empty
circles represent particles.

as illustrated in Figure 3 (b), which leads to a failure in this extreme scenario. To avoid
the occurrence of such extreme cases, we proposed Assumption 2 (C1). In conjunction
with other assumptions, the similarity of the local geometry of E on the set {G = u} for
sufficiently small values of u is guaranteed as established in Lemma B.1.
The Assumption 2 (C2) ensures that the constrained minimizer is distinguishable from

other points, i.e., on each adjacent level set {G = u}, there is a unique minimizer vu and

E(v) behaves like ∥v − vu∥1/µ∞ near the vu.

4.3. Sketch of the Proof. In this subsection, we layout the strategy of the proof. The
forthcoming subsections (4.4, 4.5, 4.6, 4.7, and 4.8) will introduce needed lemmas, propo-
sitions, and the complete proof of Theorem 4.1.

Initiating our analysis with Lemma 4.2 in Subsection 4.4, we plug
1

2
∥v − v∗∥22 into

Definition 3.2. This yields the following differential inequality:

d

dt
V
(
ρt
)
≤−

(
2λ− σ2

)
V
(
ρt
)
+
√
2(λ+ σ2)

√
V
(
ρt
)
∥vα
(
ρt
)
− v∗∥2 +

σ2

2
∥vα
(
ρt
)
− v∗∥22.

It is noteworthy that if ∥vα
(
ρt
)
− v∗∥2 could be bounded by a suitable scalar multiple of√

V
(
ρt
)
, we would then obtain the inequality:

d

dt
V
(
ρt
)
≤
(
− (1− τ)(2λ− σ2)

)
V
(
ρt
)
, (14)
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to which Gronwall’s inequality can be applied, ensuring exponential decay. Consequently,
in Proposition 1 in Subsection 4.5, we establish the following inequality:

∥vα
(
ρt
)
− v∗∥2 ≤2

√
d ·
(
q + E0r + τ2(u) + τ4(max{u, r})

)µ
η

+

√
de−α

(
q−τ3(max{u,r})

)
ρt
(
B∞(v∗, r)

) ∫
{G∈(0,u)}

∥v − vG(v)∥2 dρt(v)

+

√
de−α

(
q−τ3(r)

)
ρt
(
B∞(v∗, r)

) ∫
{G=0}

∥v − v∗∥2 dρt(v)

+
√
dτ1(u)

+

∫
{G(v)≥u}

∥v − v∗∥2
∥ωα∥L1(ρt)

e−αE(v) dρt(v).

where q, u, r are parameters to be determined. It is observed that with an appropriate
choice of q, u, r, provided ρt(B(v∗, r)) is suitably bounded from below, as proven in Lemma
4.5 in Subsection 4.6, letting α be sufficiently large will make the first four terms above
small enough. Concerning the last term, it is related to

∫
Gdρt(v), which can be controlled

by Lemma 4.6 in Subsection 4.7.
Consequently, we can control ∥vα

(
ρt
)
− v∗∥2 in such a way that (14) holds, thereby

ensuring exponential decay.

4.4. Dynamics of V
(
ρt
)
. In this subsection, we present the dynamics of the energy func-

tional V
(
ρt
)
.

Lemma 4.2. Let V
(
ρt
)
be the energy functional defined in (10). Under Assumption 2,

d

dt
V
(
ρt
)
≤− (2λ− σ2)V

(
ρt
)
+
√
2(λ+ σ2)

√
V
(
ρt
)
∥vα
(
ρt
)
− v∗∥2 +

σ2

2
∥vα
(
ρt
)
− v∗∥22

− 1

ϵ

∫ 〈
∇G, v − v∗

〉
dρt(v).

Proof. See Appendix D. □

4.5. Laplace’s Principle. One can notice, in the dynamics proved in the last subsec-
tion, there is an unknown quantity ∥vα

(
ρt
)
− v∗∥2. As mentioned in Subsection 4.3, if

∥vα
(
ρt
)
− v∗∥2 could be bounded by a suitable scalar multiple of

√
V
(
ρt
)
, we can apply

Gronwall’s inequality. In this subsection, we deduce a quantitative Laplace principle to
bound ∥vα

(
ρt
)
− v∗∥2. One can first prove the following two lemmas.

Lemma 4.3. Fix r ∈ (0, R0) small enough. For ∀q > 0 with q + E0r < E∞,∫
{G=0}

∥v − v∗∥2
∥ωα∥L1(ρt)

e−αE(v) dρt(v) ≤
√
d
(
q + E0r

)µ
η

+

√
de−α

(
q−τ3(r)

)
ρt
(
B∞(v∗, r)

) ∫
{G=0}

∥v − v∗∥2 dρt(v).
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Here, E0r , E∞ and τ3 are quantities defined in Assumption 2 (C) and Lemma B.1.

Proof. See Appendix E.1 □

Lemma 4.4. Fix 0 < u < u0 and r > 0 small. For ∀q > 0 satisfying the condition that
q + E ũr − Eũ < E∞ is true for ∀ũ ∈ (0, u), then∫

{G∈(0,u)}

∥v − v∗∥2
∥ωα∥L1(ρt)

e−αE(v) dρt(v) ≤
√
d
(
q + E0r + τ2(u) + τ4(max{u, r})

)µ
η

+

√
de−α

(
q−τ3(max{u,r})

)
ρt
(
B∞(v∗, r)

) ∫
{G∈(0,u)}

∥v − vG(v)∥2 dρt(v)

+
√
dτ1(u).

Here, vG(v) = argminv′∈{G(v′)=G(v)} E(v′), Eũ and τ1 are defined in Assumption 2 (C1), E ũr ,
τ3 and τ4 are quantities defined in Lemma B.1.

Proof. See Appendix E.2 □

Now we are ready to prove a quantitative Laplace principle.

Proposition 1 (A Quantitative Laplace Principle). Fix r > 0 small enough and u > 0
small enough. q > 0 is a constant such that q+ E ũr −Eũ < E∞ is true for ∀ũ ∈ [0, u). Then

∥vα
(
ρt
)
− v∗∥2 ≤2

√
d ·
(
q + E0r + τ2(u) + τ4(max{u, r})

)µ
η

+

√
de−α

(
q−τ3(max{u,r})

)
ρt
(
B∞(v∗, r)

) ∫
{G∈(0,u)}

∥v − vG(v)∥2 dρt(v)

+

√
de−α

(
q−τ3(r)

)
ρt
(
B∞(v∗, r)

) ∫
{G=0}

∥v − v∗∥2 dρt(v)

+
√
dτ1(u)

+

∫
{G(v)≥u}

∥v − v∗∥2
∥ωα∥L1(ρt)

e−αE(v) dρt(v).

Proof. By the definition of the consensus point vα
(
ρt
)
, one has

∥vα
(
ρt
)
− v∗∥2 = ∥

∫
v · e

−αE(v)

∥ωα∥1
dρt(v)− v∗∥2

= ∥
∫

(v − v∗) · e−αE(v)

∥ωα∥L1(ρt)

dρt(v)∥2 ≤
∫
∥v − v∗∥2
∥ωα∥L1(ρt)

e−αE(v) dρt(v),
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where we used Minkowski’s inequality. Then we can compute:

∥vα
(
ρt
)
− v∗∥2 ≤

∫
∥v − v∗∥2
∥ωα∥L1(ρt)

e−αE(v) dρt(v)

=

∫
{G=0}

∥v − v∗∥2
∥ωα∥L1(ρt)

e−αE(v) dρt(v) +

∫
{G∈(0,u)}

∥v − v∗∥2
∥ωα∥L1(ρt)

e−αE(v) dρt(v)

+

∫
{G≥u}

∥v − v∗∥2
∥ωα∥L1(ρt)

e−αE(v) dρt(v).

For the first term, we can upper bound it using Lemma 4.3:

∫
{G=0}

∥v − v∗∥2
∥ωα∥L1(ρt)

e−αE(v) dρt(v) ≤
√
d(q + E0r )µ

η
+

√
de−α

(
q−τ3(r)

)
ρt
(
B∞(v∗, r)

) ∫
{G=0}

∥v − v∗∥2 dρt(v)

≤
√
d
(
q + E0r + τ2(u) + τ4(max{u, r})

)µ
η

+

√
de−α

(
q−τ3(r)

)
ρt
(
B∞(v∗, r)

) ∫
{G=0}

∥v − v∗∥2 dρt(v).

For the second term, we can upper bound it using Lemma 4.4:∫
{G∈(0,u)}

∥v − v∗∥2
∥ωα∥L1(ρt)

e−αE(v) dρt(v) ≤
√
d
(
q + E0r + τ2(u) + τ4(max{u, r})

)µ
η

+

√
de−α

(
q−τ3(max{u,r})

)
ρt
(
B∞(v∗, r)

) ∫
{G∈(0,u)}

∥v − vG(v)∥2 dρt(v)

+
√
dτ1(u).

Finally, We leave the third term unchanged. Combining the estimates for the above three
terms, we can finish the proof. □

4.6. Lower bound for ρt
(
B∞(v∗, r)

)
. In this subsection, we establish a lower bound for

ρt
(
B∞(v∗, r)

)
, a crucial element for our subsequent application of the Laplace principle.

We first define the mollifier ϕr(v) as follows

ϕr(v) =


d∏

k=1

exp

(
1− r2

r2 − (v − v∗)2k

)
, if ∥v − v∗∥∞ < r,

0, else.

(15)
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Lemma 4.5. Let B = supt∈[0,T ] ∥vα
(
ρt
)
− v∗∥∞. Then for all t ∈ [0, T ],

ρt
(
B∞(v∗, r)

)
≥
( ∫

ϕr dρ0(v)
)
e−at,

for a = 2dmax

{
λ(
√
cr +B)

√
c

(1− c)2r
+
σ2(cr2 +B2)(2c+ 1)

(1− c)4r2
,

2λ2

(2c− 1)σ2

}
,

where c ∈ (
1

2
, 1) is some constant satisfying

(2c− 1)c ≥ (1− c)2.

Proof. See Applendix F. □

4.7. Dynamics of
∫
Gdρt(v). In Lemma 4.2, we have gained control over ∥vα

(
ρt
)
− v∗∥2,

yet the dynamics of the last term

−1

ϵ

∫ 〈
∇G, v − v∗

〉
dρt(v)

remains to be studied, which we do now.

Lemma 4.6. Assume supt∈[0,T ] ∥vα
(
ρt
)
− v∗∥2 < ∞ and supt∈[0,T ] V

(
ρt
)
< ∞. Then for

ϵ > 0 small enough, ∫
Gdρt(v) ≤

∫
Gdρ0(v)

for ∀t ∈ [0, T ].

Proof. See Appendix G. □

4.8. Proof of Theorem 4.1. In this subsection, we present the complete proof of Theorem
4.1.

For simplicity, in the following, we assume τ1(u) = τ2(u) = τ3(u) = τ4(u) = u, where
τ1, τ2, τ3, τ4 are defined in Assumption 2 (C) and Lemma B.1. We point out that the proof
technique remains valid for any choice of τi that is an increasing function and converges to
0 as u approaches 0.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. First we use Lemma 4.2 to derive the dynamics of V
(
ρt
)
:

d

dt
V
(
ρt
)
≤ −(2λ− σ2)V

(
ρt
)
+
√
2(λ+ σ2)

√
V
(
ρt
)
∥vα
(
ρt
)
− v∗∥2 +

σ2

2
∥vα
(
ρt
)
− v∗∥22,

where the last term on the right-hand-side of Lemma 4.2 is omitted because of its non-
positivity due to Assumption 2 (B1).

Now we define C(t) as follows,

C(t) = min

{
τ

2

(2λ− σ2)√
2(λ+ σ2)

,

√
τ
(2λ− σ2)

σ2

}√
V
(
ρt
)
,
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and Tα,ϵ as

Tα,ϵ = sup
{
t ≥ 0| V

(
ρt′
)
> δ,

∥∥vα(ρt′)− v∗∥2 ≤ C(t′) for all t′ ∈ [0, t]
}
.

As long as ∥vα
(
ρt′
)
− v∗∥2 ≤ C(t′) is true, it is straightforward to verify that

d

dt
V
(
ρt′
)
≤ −(1− τ)(2λ− σ2)V

(
ρt′
)
.

Thus by Gronwall’s inequality, if t ≤ Tα,ϵ, one has

V
(
ρt
)
≤ V(ρ0) exp

(
− (1− τ)(2λ− σ2)t

)
Different choices of (α, ϵ) will result in different cases as follows.

Case 1
(
Tα,ϵ ≥ T ∗

)
.

Notice that V(ρT ∗) ≤ V(ρ0) exp
(
−(1−τ)(2λ−σ2)t

)
= δ. So we have mint∈[0,T ∗] V

(
ρt
)
≤ δ.

This completes the proof.
Case 2

(
Tα,ϵ < T ∗ and V

(
ρTα,ϵ

)
= δ
)
.

In this case, it clear that mint∈[0,T ∗] V
(
ρt
)
≤ V

(
ρTα,ϵ

)
= δ, which completes the proof.

Case 3
(
Tα,ϵ < T ∗, V

(
ρTα,ϵ

)
> δ and ∥vα

(
ρTα,ϵ

)
− v∗∥2 = C

(
Tα,ϵ
))

.

Case 3 is the only non-trivial case. We now show that suitable choices of α and ϵ will
make Case 3 impossible.

We pick

q = min

{
1

4

(
η
C
(
Tα,ϵ
)

8
√
d

)1/µ

,
1

2
√
d
E∞

}
,

r = min

{
max

s∈(0,R0)
{s| E0s ≤

1

4
q}, q

4

}
,

u = min

{
1

4

(
η
C
(
Tα,ϵ
)

8
√
d

)1/µ

,
q

4
,
C
(
Tα,ϵ
)

4
√
d

}
.

One can verify that this choice of q, r and u will satisfy the assumptions of Proposition
1, i.e., q + E ũr − Eũ < E∞. To see this, firstly, by the choice of q, r, u, for any ũ ∈ [0, u):

|Eũ| ≤ ũ < u ≤ 1

4
q

and

E ũr = E0r + (E ũr − E0r ) ≤
1

4
q +max{ũ, r} ≤ 1

4
q +max{u, r} ≤ 1

4
q +

1

4
q =

1

2
q.

Here the first inequality is due to the definition of r and Lemma B.1. Thus, one has

q + E ũr − Eũ ≤ q +
1

2
q +

1

4
q =

7

4
q ≤ 7

8
E∞ < E∞.

This verifies the assumptions in Proposition 1.
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Next, in Case 3, one has V
(
ρTα,ϵ

)
> δ. Thus

C
(
Tα,ϵ
)
=min

{
τ

2

(2λ− σ2)√
2(λ+ σ2)

,

√
τ
(2λ− σ2)

dσ2

}√
V
(
ρTα,ϵ

)
> min

{
τ

2

(2λ− σ2)√
2(λ+ σ2)

,

√
τ
(2λ− σ2)

σ2

}
√
δ.

The last inequality above, will be utilized later, is Denoted

Cδ := min

{
τ

2

(2λ− σ2)√
2(λ+ σ2)

,

√
τ
(2λ− σ2)

σ2

}
√
δ. (16)

Then one can see that q, r and u are bounded below by

min

{
1

4

(
η
Cδ

8
√
d

)1/µ
,

1

2
√
d
E∞
}
, min

{
max

s∈(0,R0)
{s| E0s ≤

1

4
q(δ)}, q(δ)

4

}
and

min

{
1

4

(
η
Cδ

8
√
d

)1/µ
,
q(δ)

4
,
Cδ

4
√
d

}
respectively. We use q(δ), r(δ) and u(δ) to denote them. We now apply Proposition 1 to
ρTα,ϵ to get

∥vα
(
ρTα,ϵ

)
− v∗∥2 ≤2

√
d ·
(
q + E0r + τ2(u) + τ4(max{u, r})

)µ
η

+

√
de−α

(
q−τ3(max{u,r})

)
ρTα,ϵ

(
B∞(v∗, r)

) ∫
{G∈(0,u)}

∥v − vG(v)∥2 dρTα,ϵ(v)

+

√
de−α

(
q−τ3(r)

)
ρTα,ϵ

(
B∞(v∗, r)

) ∫
{G=0}

∥v − v∗∥2 dρTα,ϵ(v)

+
√
dτ1(u)

+

∫
{G(v)≥u}

∥v − v∗∥2
∥ωα∥L1(ρTα,ϵ )

e−αE(v) dρTα,ϵ(v).

Each of the five terms on the right-hand side of the above inequality will be individually
bounded.

For the first term, one can use the definition of q, r and u to get

2
√
d ·
(
q + E0r + τ2(u) + τ4(max{u, r})

)µ
η

≤ 2
√
d ·

(
4 · 1

4
·
(
η
C
(
Tα,ϵ
)

8
√
d

)1/µ
)µ

η
=
C
(
Tα,ϵ
)

4
,

(17)
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where the inequality above is because each term in the sum on the numerator is bounded

above by
1

4
·
(
η
C
(
Tα,ϵ
)

8
√
d

)1/µ

as determined by the choice of q, r and u.

For the second term, with the chosen values of u and r, one can first verify

q − τ3(max{u, r}) = q −max{u, r} ≥ q − q

4
>
q

2
. (18)

Then

√
de−α

(
q−τ3(max{u,r})

)
ρTα,ϵ(B

∞(v∗, r))

∫
{G∈(0,u)}

∥v − vG(v)∥2 dρTα,ϵ(v)

≤
√
d∫

ϕr(δ) dρ0
· ea(δ)T ∗ · e−αq/2

(∫
{G∈(0,u)}

∥v − v∗∥2 + ∥v∗ − vG(v)∥2 dρTα,ϵ(v)
)

≤
√
d∫

ϕr(δ) dρ0
· ea(δ)T ∗ · e−αq/2

(√
2V
(
ρ0
)
+

∫
{G∈(0,u)}

√
dτ1(u) dρTα,ϵ(v)

)
≤

√
d∫

ϕr(δ) dρ0
· ea(δ)T ∗ · e−αq/2

(√
2V
(
ρ0
)
+
√
dτ1(u)

)
≤

√
d∫

ϕr(δ) dρ0
· ea(δ)T ∗ · e−αq/2

(√
2V
(
ρ0
)
+ E∞

)
,

(19)

where

a(δ) = 2dmax

{
λ
(√

cR0 + C(0)
)√

c

(1− c)2r(δ)
+
σ2
(
cR2

0 + C(0)2
)
(2c+ 1)

(1− c)4r(δ)2
,

2λ2

(2c− 1)σ2

}
.

In the first inequality above, we used (18), the fact that Tα,ϵ < T ∗ and Lemma 4.5 with
parameter B = supt∈[0,Tα,ϵ] ∥vα

(
ρt
)
−v∗∥∞ ≤ supt∈[0,Tα,ϵ] ∥vα

(
ρt
)
−v∗∥2 ≤ supt∈[0,Tα,ϵ]C(t) ≤

C(0). In the second inequality above, we used the Cauchy inequality. Assumption 2 (C1)

was used to deduce ∥v − vG(v)∥2 ≤
√
d∥v − vG(v)∥∞ ≤

√
dτ1
(
G(v)

)
≤
√
dτ1(u). In the last

inequality above, we used the definition of u to deduce that u ≤ E∞√
d
.

For the third term, similarly, one has

√
de−α

(
q−τ3(r)

)
ρTα,ϵ

(
B(v∗, r)

) ∫
{G=0}

∥v − v∗∥2 dρTα,ϵ(v) ≤
√
d∫

ϕr(δ) dρ0
· ea(δ)T ∗ · e−αq/2

(√
2V
(
ρ0
))
. (20)

For the fourth term, one has

√
dτ1(u) =

√
du ≤

C
(
Tα,ϵ
)

4
. (21)
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Combining (17, 19, 20, 21), we can get the following estimate:

∥vα(ρTα,ϵ)− v∗∥2 ≤
C
(
Tα,ϵ
)

2
+ 2 ·

√
d∫

ϕr(δ) dρ0
· ea(δ)T ∗ · e−αq/2

(√
2V
(
ρ0
)
+ E∞

)
+

∫
{G(v)≥u}

∥v − v∗∥2
∥ωα∥L1(ρTα,ϵ )

e−αE(v) dρTα,ϵ(v).

(22)

Now we pick α so that

2 ·
√
d∫

ϕr(δ) dρ0
· ea(δ)T ∗ · e−αq/2

(√
2V
(
ρ0
)
+ E∞

)
≤ 1

4
C
(
Tα,ϵ
)
. (23)

It turns out that if one picks α to be

α(δ) =
2

q(δ)
log

(
8
√
dea(δ)T

∗
(√

2V
(
ρ0
)
+ E∞

)
Cδ

∫
ϕr(δ) dρ0

)
, (24)

then

LHS of (23) ≤ 2 ·
√
d∫

ϕr(δ) dρ0
· ea(δ)T ∗ · e−αq(δ)/2

(√
2V
(
ρ0
)
+ E∞

)
≤ 1

4
Cδ ≤

1

4
C
(
Tα,ϵ
)
,

where in the first and third inequalities, we used the facts that q ≥ q(δ) and C
(
Tα,ϵ
)
> Cδ.

We remark here that α(δ) is fixed once δ is fixed. With this choice of α, we have

∥vα(ρTα,ϵ)− v∗∥2 ≤
3

4
C
(
Tα,ϵ
)
+

∫
{G(v)≥u}

∥v − v∗∥2
∥ωα∥L1(ρTα,ϵ )

e−αE(v) dρTα,ϵ(v). (25)

Then we can go back to estimate the last term of (22). We can deduce∫
{G(v)≥u}

∥v − v∗∥2
∥ωα∥L1(ρTα,ϵ )

e−αE(v) dρTα,ϵ(v) ≤ eα(δ)(E−E)
∫
{G≥u}

∥v − v∗∥2 dρTα,ϵ(v)

≤ eα(δ)(E−E)
√

2V
(
ρ0
)
·
√
ρTα,ϵ

(
{G ≥ u}

)
≤ eα(δ)(E−E)

√
2V
(
ρ0
)
· 1√

u
·

√∫
GdρTα,ϵ(v)

≤ eα(δ)(E−E)
√

2V
(
ρ0
)
· 1√

u(δ)
·

√∫
GdρTα,ϵ(v),

(26)
where in the second inequality, we used the Cauchy inequality, in the third inequality, we
used the Markov inequality and in the last inequality, we used the fact that u ≥ u(δ).
Thus by applying Lemma 4.6 with B = C(0) and B̃ = V(ρ0), when ϵ is small enough, the
following holds: ∫

GdρTα,ϵ(v) ≤
∫
Gdρ0(v). (27)
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Thus combining (26) and (27) gives∫
{G(v)≥u}

∥v − v∗∥2
∥ωα∥L1(ρTα,ϵ )

e−αE(v) dρTα,ϵ(v) ≤ eα(δ)(E−E)
√

2V
(
ρ0
)
· 1√

u(δ)
·

√∫
Gdρ0(v). (28)

Now we pick the function I(x) to be

1

128V
(
ρ0
)C2

xe
−2α(x)(E−E)u2(x),

where Cx and α(x) are defined in (16) and (24) respectively. As long as∫
Gdρ0(v) ≤ I(δ), (29)

combining (28) and (29) yield∫
{G(v)≥u}

∥v − v∗∥2
∥ωα∥L1(ρTα,ϵ )

e−αE(v) dρTα,ϵ(v) ≤ eα(δ)(E−E)
√

2V
(
ρ0
)
· 1√

u(δ)
·

√∫
Gdρ0(v)

≤ 1

8
Cδ ≤

1

8
C
(
Tα,ϵ
)
.

By plugging the above inequality back to (25), one gets

∥vα(ρTα,ϵ)− v∗∥2 ≤
3

4
C
(
Tα,ϵ
)
+

1

8
C
(
Tα,ϵ
)
=

7

8
C
(
Tα,ϵ
)
< C

(
Tα,ϵ
)
,

which contradicts with the assumption ∥vα(Tα,ϵ) − v∗∥2 = C
(
Tα,ϵ
)
as stated in Case 3.

Therefore, we have demonstrated that under the assumptions of Theorem 4.1, if one selects
α to be α(δ) and chooses ϵ to be sufficiently small, Case 3 will not occur.

Thus we have proved that if all the conditions in Theorem 4.1 are satisfied, the desired
decay can be achieved with the specified choices of α and ϵ. □

5. Numerical Experiments

In this section, we present the discretized algorithm of the continuous model (3). Through-
out this section, we use the anisotropic version (6) as it is more efficient in solving high-
dimensional optimization problems.

5.1. Algorithm. First, one notices that in the time-continuous model (3), the forcing
term 1

ϵ
∇G needs to be relatively large for the particles to remain near the constraint

set. However, a straightforward explicit scheme of the dynamics requires the time step
γ to be of the same order as ϵ. This implies that as ϵ approaches zero, the algorithm
becomes expensive. On the other hand, making the stiff term 1

ϵ
∇G(V i

k+1) implicit enhances
numerical stability, but it becomes computationally challenging for complex constraints.
To address this, we introduce an algorithm with better stability for any equality constraints.
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The key idea is to employ Taylor expansion to approximate the term ∇G(V i
k+1) in the

implicit algorithm with its first-order approximation.

V j
k+1 = V j

k − λγ(V
j
k − vα(ρ̂k))−

(γ
ϵ
∇G(V j

k ) +
γ

ϵ
∇2G(V j

k )(V
j
k+1 − V

j
k )
)
− σ√γ(V j

k − v̄k)⊙ zk,

which leads to the following constrained CBO algorithm,

V j
k+1 = V j

k −
[
I +

γ

ϵ
∇2G(V j

k )
]−1

(
λγ(V j

k − vα(ρ̂k)) +
γ

ϵ

m∑
i=1

gi(V
j
k )∇gi(V

j
k ) + σ

√
γ(V j

k − v̄k)⊙ zk

)
,

(30)
where ∇2G(v) represents the Hessian of G(v), i.e., ∇2G(v) =

∑m
i=1(∇gi)⊤∇gi+gi∇2gi and

γ is the time step, and ⊙ is a point-wise multiplication, i.e., the i-th component of x ⊙ y
is xiyi. Here V j

k approximates the space location of the j-th particle at time t = kγ, and
zk is a d-dimensional random variable following a standard normal distribution N (0, Id).
During different steps, zk is sampled independently. The complete algorithm is formulated
as in Algorithm 1.

The preliminary results shown in Figure 2 (a) are obtained using the above scheme with
ϵ = 0.01 and γ = 0.1, which demonstrates the stability of the algorithm.

We propose an alternative algorithm when the dimensionality is high, where we introduce
independent noise after the particles concentrate. This algorithm introduces additional
noises to help the particles explore the landscape better, which is necessary when the
dimension of the optimization problem is high. The complete algorithm is formulated as
in Algorithm 2.

Algorithm 1 Constrained CBO Algorithm

Initialization: Choose hyperparameters ϵ, α, time step γ, stopping threshold ϵstop, and
sample size N . Sample N particles V j from distribution ρ0(v).

1: while 1
dN

∑N
j=1 ∥V j − vα(ρ̂)∥2 > ϵstop do

2: Calculate vα(ρ̂):

vα(ρ̂) =
1

Z

N∑
j=1

µjV
j, with Z =

N∑
j=1

e−αE(V j), µj = e−αE(V j)

3: Update each particle’s position {V j}Nj=1:

V j ← V j−

[
I +

γ

ϵ

m∑
i=1

∇2
[
g2i (V

j)
]]−1(

λγ(V j − vα(ρ̂)) +
γ

ϵ

m∑
i=1

∇
[
g2i (V

j)
]
+ σ
√
γ(V j − vα(ρ̂))⊙ z

)
,

where z ∼ N (0, Id).
4: end while
5: Output vα

(
ρ̂
)
, E(vα

(
ρ̂
)
)

5.2. Numerical examples.
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Algorithm 2 Constrained CBO Algorithm with Independent Noise

Initialization: Choose suitable hyper-parameters ϵ, α, and time step γ, stopping
threshold ϵstop, ϵindep, independent noise σindep. Sample N particles V j following

distribution ρ0(v) and set E⋆ to be a large constant.

1: while |E(vα
(
ρ̂
)
)− E⋆| ≥ ϵindep do

2: while 1
dN

∑N
j=1 ∥V j − vα(ρ̂)∥2 > ϵstop do

3: Calculate vα(ρ̂):

vα(ρ̂) =
1

Z

N∑
j=1

µjV
j , with Z =

N∑
j=1

e−αE(V j), µj = e−αE(V j)

4: Update each particle’s position {V j}Nj=1:

V j ← V j−

[
I +

γ

ϵ

m∑
i=1

∇2
[
g2i (V

j)
]]−1(

λγ(V j − vα(ρ̂)) +
γ

ϵ

m∑
i=1

∇
[
g2i (V

j)
]
+ σ
√
γ(V j − vα(ρ̂))⊙ z

)
,

where z ∼ N (0, Id).
5: end while
6: if E(vα

(
ρ̂
)
) < E⋆ then

7:

E⋆ = E(vα
(
ρ̂
)
), vα

(
ρ̂
)⋆

= vα
(
ρ̂
)
.

8: end if
9: Each particle does an independent move:

V j ← V j + σindep
√
γz, for 1 ≤ j ≤ N,

where z ∼ N (0, Id).
10: end while
11: Output vα

(
ρ̂
)⋆
, E⋆.

5.2.1. A simple example. We first test the algorithm on a 2-dimensional example,

min
(v1,v2)∈R2

v21 + v22 (31)

We test two difference types of constraints. The first case is an ellipse,

g(v) =
(v1 + 1)2

2
+ v22 − 1 = 0. (32)

The second case is a line,

g(v) = v1 + v2 − 3 = 0. (33)

The exact minimizers are,

Ellipse:v∗ = (
√
2− 1, 0); Line: v∗ = (3/2, 3/2).

We use Algorithm 1 with

N = 50, α = 50, ϵ = 0.01, λ = 1, σ = 5, γ = 0.1, ϵstop = 10−14,
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and the particles are initially set to follow a uniform distribution in the range of [−3, 3] for
both dimensions. We consider our search for the constrained minimizer successful if, when
the algorithm finishes, ∥vα

(
ρ̂
)
− v∗∥∞ ≤ 0.1. The success rate and the average distance

are shown in Table 1, where the average distance to v∗ in the table is measured using the
following norm

D(v, v∗) =
1√
d
∥v − v∗∥ =

√√√√1

d

d∑
i=1

(v − v∗)2i . (34)

In Figure 4, we show the evolution of the objective function value E(vα
(
ρ̂
)
), the constraint

value g(vα
(
ρ̂
)
), and the distance D(vα

(
ρ̂
)
, v∗) over 100 simulations. It is evident that the

consensus point converges within 10 steps for all simulations.
In Figure 5, the evolution of all the particles and the consensus point are shown in time

steps k = 0, 5, 50, 100. In all cases, after 5 steps, most of the particles are driven to the
constraints by the strong constraint term 1

ϵ
∇G(v) and stay there consistently. It is worth

noting that in the case of the ellipse, not all particles converge around the consensus point.
Some particles remain at the point ṽ where ∇g(ṽ) = 0 instead of satisfying g(v) = 0.
This happens when G(v) = g2(v) does not satisfy Assumption 2 (B1). However, it will
not affect the convergence of the consensus point as long as the loss function value at ṽ
is not significantly small compared to the constrained minimum. (See Remark 3 for more
explanation.)

Table 1. The result of Algorithm 1 on (31) with constraints (32) or (33)

success rate average distance to v∗

ellipse constraint 100% 0.0147
line constraint 100% 0.0157

5.2.2. Ackley function. We now test the proposed algorithms on a highly non-convex ob-
jective function. Consider the following Ackley function,

min
v

−A exp

(
−a
√
b2

d
∥v − v̂∥22

)
− exp

(
1

d

d∑
i=1

cos(2πb(vi − v̂i)

)
+ e1 + A, (35)

where b = 1, A = 20, a = 0.1, and v̂ is the global minimum of the unconstrained problem.
The above function in two-dimension is shown in Figure 1. Here we consider three different
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Figure 4. The first line is the result for the optimization problem (31) with
ellipse constraint (32), while the second line is for the line constraint (33). The
left column is the evolution of the objective function value and constraint value,
while the right column is the evolution of the distance between the consensus point
and the exact minimizer, where the distance is defined in (34). The light lines are
results from 100 simulations, while the dark lines are the average values.
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Figure 5. The evolution of all the particles (in blue) and its consensus point (in
red) in 2-dimensional plane when solving for the constrained problem (31) with the
ellipse constraint (32) (the first line) and the line constraint (33) (the second line).
The constrained line is plotted in black, the black point is the global minimizer of
the objective function, while the green point is the constrained minimizer v∗.
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constraints,

Case 1. ∥v∥22 − 1 = 0. (36)

Case 2.
d−1∑
i=1

v2i − vd = 0. (37)

Case 3.
d∑

i=1

vi − 1 = 0, 2
d−1∑
i=1

vi −
1

2
vd −

1

2
= 0. (38)

We set v̂ = (0.4, · · · , 0.4), s.t. the unconstrained minimizer is not the same as the con-
strained minimizer. The constrained minimizers for the three-dimensional cases are

Case 1. v∗ = 1/
√
3(1, 1, 1); Case 2. v∗ = (0.4283, 0.4283, 0.3669); Case 3. v∗ = (0.2, 0.2, 0.6).

The constrained minimizers for the 20-dimensional case are

Case 1. v∗i = 1/
√
20, 1 ≤ i ≤ 20; Case 2. v∗i = 0.3542, 1 ≤ i ≤ 19, v∗20 = 2.3839.

For the 3-dimensional Ackley function, we use Algorithm 1 with

N = 100, α = 50, ϵ = 0.01, λ = 1, σ = 1, γ = 0.1, ϵstop = 10−14.

For the 20-dimensional Ackley function, we use Algorithm 2 with

N = 100, α = 50, ϵ = 0.01, λ = 1, σ = 1, γ = 0.1, ϵindep = 10−5,

Case 1. & Case 3. ϵmin = 0.01, σindep = 0.3;

Case 2. ϵindep = 0.001, σindep = 1;

and all the particles initially follow V j ∼Unif[−3, 3]d.
The evolution of the distance D(vα

(
ρ̂
)
, v∗) between the consensus point and the accurate

solution is shown in Figure 6, where one can see that the consensus point converges to the
true minimizer within 100 steps. Besides, The success rate, averaged distance for the
output consensus point v∗, and the averaged total steps are stated in Table 2. We consider
the simulation to be successful if maxk |vα

(
ρ̂
)
k
− v∗k| ≤ 0.1, and the distance to v∗ is

measured in D(vα
(
ρ̂
)
, v∗) and averaged over 100 simulations. One can see that except for

the 20-dimensional case 2, the algorithm can find the exact minimizer within 400 steps
with 100% success rate. Even for the 20-dimensional case 2, although the success rate is a
bit less than 100%, the average distance to v∗ is less than 0.05, which means that they are
all relatively close to the exact minimizer v∗.

The reason for the nonsmoothness in the later stage of the average line is due to the
limited number of samples for the larger steps. In most simulations, the algorithm typically
concludes its iterations around the average total steps in the table. As it is hard to find
the exact minimizer for 20-dimensional Ackley function with the constraints (38), so we
only plot the result for case 3 in 3-dimension.
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Table 2. The result of Algorithm 1 on 3-dimensional Ackley function and Algo-
rithm 2 for 20-dimensional Ackley function.

success rate average distance to v∗ average total steps
case 1 d=3 100% 8× 10−3 295

d=20 100% 1.56× 10−2 390
case 2 d=3 100% 4.5× 10−3 213

d=20 96% 3.13× 10−2 4288
case 3 d=3 100% 2.8× 10−3 163
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Figure 6. The evolution of the distanceD(vα
(
ρ̂
)
, v∗) between the consensus point

and the exact minimizer. The light lines are the results from 100 simulations, while
the dark lines are the average values.

5.2.3. Thomson’s Problem. The Thomson problem involves determining the positions for k
electrons on a sphere in a way that minimizes the electrostatic interaction energy between
each pair of electrons with equal charges. The associated constrained optimization problem
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is formulated as follows,

min E(v1, ..., vk) =
1

k

∑
i<j

1

∥vi − vj∥2
s.t. ∥vi∥22 − 1 = 0, for i = 1, · · · , k.

We use Algorithm 2 with

N = 50, α = 50, ϵ = 0.01, λ = σ = 1, γ = 0.1, ϵindep = 10−14, ϵmin = 0.01, σindep = 0.3,

and all the particle initially follow V j ∼ Unif[−1, 1]3k.
We run the above algorithm for k = 2, 3, 8, 15, 56, 470, which is equivalent to conducting

a 3k-dimensional optimization problem with k constraints. The success rate, averaged
relative error, averaged constraints value (value of

∑m
i=1 gi(vα

(
ρ̂
)
) and averaged total steps

are summarized in Table 3. We define

relative error =
|E(vα

(
ρ̂
)
)− E(v∗)|
E(v∗)

(39)

and consider a simulation to be successful if both inequalities are satisfied for the output
vα
(
ρ̂
)
,

relative error ≤ 0.05,
k∑

i=1

(| ∥vi∥22 − 1|) ≤ 10−3.

In Figure 7, the evolution of the relative error across 100 simulations and their average
values are depicted, illustrating that all experiments converge to the optimal minimizer
within 2000 steps. The nonsmoothness of the average lines is due to the fewer samples in
large steps. For k = 56, 470, corresponding to an optimization problem of dimensions 168
and 1410 with 56, 470 constraints, the success rate is not 100%. However, it remains above
90%. Besides, the relative error and constraints value in the third and fourth columns of
Table 3 are over the success simulations, which are very small. This verifies our algorithm
has an excellent performance in high dimensions.

Table 3. The result of Algorithm 2 on Thomson problem.

success rate relative error constraints value total steps
k = 2, (d = 6) 100% 4.4× 10−3 3.8× 10−11 382
k = 3, (d = 9) 100% 9.9× 10−3 1.4× 10−10 407
k = 8, (d = 24) 100% 1.78× 10−2 2.3× 10−10 567
k = 15, (d = 45) 100% 1.57× 10−2 3.4× 10−10 895
k = 56, (d = 168) 97% 1.44× 10−2 2.91× 10−6 1610
k = 470, (d = 1410) 93% 1.95× 10−2 4.03× 10−6 1960
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Figure 7. Thomson Problem: the decay of the relative error over 100 simulation
and its mean.

6. Conclusions

In this paper, we propose a new CBO-based method for solving constrained non-convex
minimization problem with equality constraints and potentially non-differentiable loss func-
tions. Specifically, we augment the original CBO framework with a new forcing term
designed to guide particles toward the constraint set. On the theoretical side, we con-
duct a rigorous analysis of the mean-field limit for the proposed model (7), deriving the
corresponding macroscopic model (8) and establishing well-posedness results for both the
microscopic and macroscopic models. To demonstrate the convergence of the method, we
study the long-time behavior of the macroscopic model (8) through an analysis of the
associated Fokker-Planck equation (9). Our results establish that, under Assumption 2
and with a proper choice of parameters, particles converge to the constrained minimizer
v∗ with arbitrary closeness. Notably, Assumption 2 (C) fits well with the basic nature of
the algorithm, while Assumption 2 (B) serves as a technical requirement needed by our
proof technique, which might be relaxed further with an alternative proof technique, as
suggested by the performance exhibited in numerical experiments where Assumption 2 (B)
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may not be strictly satisfied. On the practical side, we proposed a stable algorithm based
the continuous-in-time model. In Section 5, the algorithm’s performance is illustrated
through a series of experiments, including challenging high-dimensional problems.
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Appendix A. Some details in the Proofs of Well-posedness and
Mean-field limit

A.1. Proof of Theorem 3.1. Consider the microscopic model, which is governed by the
following equation:

dV i,N
t = −λ

(
V i,N
t − vα(ρ̂Nt )

)
dt− 1

ϵ
∇G

(
V i,N
t

)
dt+ σdiag

(
V i,N
t − vα(ρ̂Nt )

)
dBi,N

t ,

V i,N
0 ∼ ρ0,

where i = 1, ..., N . We can concantenate
{
V i,N
t

}N

i=1
into one vector and put them in one

equation. To be specific, we define

Vt =
((
V 1,N
t

)T
, ...,

(
V N,N
t

)T)T
.

Then Vt is a vector in RNd for each fixed t and it will satisfy the following equation:

dVt = −λFN(Vt) dt−
1

ϵ
LN(Vt) dt+ σMN(Vt) dB

(N)
t . (40)

Here B(N) is the standard Wiener process in RNd,

LN(Vt) =

((
∇G

(
V 1,N
t

))T
, ...,

(
∇G

(
V N,N
t

))T)T

∈ RNd,

MN(Vt) = diag
(
F 1
N

(
Vt
)
, ..., FN

N

(
Vt
))
∈ RNd×Nd

and

FN(Vt) =

((
F 1
N

(
Vt
))T

, ...,
(
FN
N

(
Vt
))T)T

∈ RNd,

where

F i
N(Vt) =

∑
j ̸=i

(
V i,N
t − V j,N

t

)
ωα

(
V j,N
t

)∑
j ωα(V

j,N
t )

∈ Rd.

Thus it suffices to prove the well-posedness result of equation (40), which is the following
theorem.

Theorem A.1. For each n ∈ N, the stochastic differential equation (40) has a unique

strong solution {Vt|t ≥ 0} for any initial condition V0 satisfying E[
∥∥V0∥∥2] <∞.

Proof. Following the same steps in Theorem 2.1 [5], we obtain

−2λV · FN(V ) ≤ 2λ
√
N
∥∥V ∥∥2, and trace(MNM

T
N)(V ) =

∥∥FN(V )
∥∥2 ≤ 4N

∥∥V ∥∥2.
Thus

−2λV · FN(V ) + σ2trace(MNM
T
N)(V ) ≤ bN

∥∥V ∥∥2,
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where bN is a positive number that depends only on λ, σ, d and N . Also, we notice that
for X ∈ Rd

−2

ϵ
X · ∇G(X) ≤ 2

ϵ

∥∥X∥∥ · ∥∥∇G(X)
∥∥ ≤ 2

ϵ

∥∥X∥∥ · ∥∥X∥∥ =
2

ϵ

∥∥X∥∥2,
where we used Assumption 1 (4). Thus,

−2

ϵ
V · LN(V ) ≤ 2

ϵ

∥∥V ∥∥2.
This implies that

2V ·
(
− λFN(V )− 1

ϵ
LN(V )

)
+ σ2trace(MNM

T
N)(V ) ≤ b̃N

∥∥V ∥∥2,
where b̃N is some positive number that depends only on λ, σ, d, ϵ and N . Then we apply
Theorem 3.1 in [11] to finish the proof. □

A.2. Proof of Theorem 3.3. Below is Lemma 3.2 from [5]

Lemma A.2. Let E satisfy Assumption 1 and µ, µ̂ ∈ P2(Rd) with∫ ∥∥v∥∥4 dµ,∫ ∥∥v̂∥∥ dµ̂ ≤ K.

Then the following stability estimate holds∥∥vα(µ)− vα(µ̂)∥∥ ≤ c0W2(µ, µ̂),

for a constant c0 > 0 depending only on α,L and K, where W2(µ, µ̂) is the Wasserstein
2-distance between µ and µ̂.

Also, we recall Theorem 11.3 in [19].

Theorem A.3. Let T be a compact mapping of a Banach space B into itself, and suppose
there exists a constant M such that ∥∥x∥∥B < M

for all x ∈ B and σ ∈ [0, 1] satisfying x = σTx. Then T has a fixed point.

Proof of Theorem 3.3. Step 1 (construct a map T ):
Let us fix ut ∈ C[0, T ]. By Theorem 6.2.2 in [1], there is a unique solution to

dVt = −λ(Vt − ut) dt−
1

ϵ
∇Gdt+ σdiag

(
Vt − ut

)
dBt,

V0 ∼ ρ0,
(41)

We use ρt to denote the corresponding law of the unique solution. Using ρt, one can
compute vα

(
ρt
)
, which is uniquely determined by ut and is in C[0, T ]. Thus one can

construct a map from C[0, T ] to C[0, T ] which maps ut to vα
(
ρt
)
.

Step 2 (T is compact):
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Firstly, by referencing Chapter 7 in [1], we obtain the following inequality for the solution
Vt to equation (41):

E
[∥∥Vt∥∥]4 ≤ (1 + E

[∥∥V0∥∥]4)ect
where c > 0. Thus one can deduce

E
[∥∥Vt∥∥4] ≲ 1 and E

[∥∥Vt∥∥2] ≲ 1. (42)

Now it suffices to prove that ImT is in C1/2[0, T ], which is compactly embedded into C[0, T ].
By Lemma A.2, one obtains∥∥vα(ρt)− vα(ρs)∥∥ ≤ c0W2(ρt, ρs). (43)

For W2(ρt, ρs), it holds that

W 2
2 (ρt, ρs) ≤ E

[∥∥Vt − Vs∥∥2]. (44)

Further we can deduce

Vt − Vs =
∫ t

s

−λ(Vτ − uτ )−
1

ϵ
∇G(Vτ ) dτ + σ

∫ t

s

diag
(
Vτ − uτ

)
dBτ .

Thus

E
[∥∥Vt − Vs∥∥2] ≲E

[∥∥ ∫ t

s

(Vτ − uτ ) dτ
∥∥2]+ E

[∥∥ ∫ t

s

∇G(Vτ ) dτ
∥∥2]

+ E
[∥∥ ∫ t

s

diag
(
Vτ − uτ

)
dBτ

∥∥2]. (45)

Now we bound from above the three terms on the right hand side respectively. For the
first term, we have

E
[∥∥ ∫ t

s

(Vτ − uτ ) dτ
∥∥2] ≤E[(∫ t

s

∥∥Vτ − uτ∥∥ dτ)2]
≤|t− s|E

[ ∫ t

s

∥∥Vτ − uτ∥∥2 dτ]
≲|t− s|

(∫ t

s

E
[∥∥Vτ∥∥2] dτ + ∫ t

s

∥∥uτ∥∥2 dτ) ≲ |t− s|,

(46)

where in the second inequality we used Cauchy’s inequality and in the last inequality, we
used (42) and the fact that ut is continuous thus bounded in [0, T ].
For the second term, we have

E
[∥∥ ∫ t

s

∇G(Vτ ) dτ
∥∥2] ≤ E

[( ∫ t

s

∥∥∇G(Vτ )∥∥ dτ)2]
≤ E

[( ∫ t

s

∥∥Vτ∥∥ dτ)2]
≤ |t− s|E

[ ∫ t

s

∥∥Vτ∥∥2 dτ] ≲ |t− s|,
(47)
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where in the second inequality, we used Assumption 1 (4) and in the last inequality, we
used (42).

For the third term in (45), we have the following estimation:

E
[∥∥ ∫ t

s

diag
(
Vτ − uτ

)
dBτ

∥∥2] = E
[ ∫ t

s

∥∥diag(Vτ − uτ)∥∥2F dτ]
≤ |t− s|E

[ ∫ t

s

∥∥Vτ − uτ∥∥4 dτ]
≲ |t− s|(E

[ ∫ t

s

∥∥Vτ∥∥4 dτ]+ ∫ t

s

∥∥uτ∥∥4 dτ) ≲ |t− s|,
(48)

where the first equality comes from Itô’s Isometry, while in the first inequality, we used
Cauchy’s inequality and in the last inequality, we used (42) and the fact that ut is bounded.

Finally, we combine (43), (44), (45), (46), (47) and (48) to deduce∥∥vα(ρt)− vα(ρs)∥∥ ≲ |t− s|1/2,

which implies that vα
(
ρt
)
∈ C0,1/2[0, T ]. Thus, T is compact.

Step 3 (Existence):
We make use of Theorem A.3. Let us take ut satisfying ut = θTut for θ ∈ [0, 1]. We now
try to prove

∥∥ut∥∥∞ ≤ q for some finite q > 0.
First, one has ∥∥ut∥∥2 = θ2

∥∥vα(ρt)∥∥2 ≤ θ2eα(E−E)
∫ ∥∥v∥∥2 dρt. (49)

Then, to bound ut, we try to bound
∫ ∥∥v∥∥2 dρt. Since ρt is a weak solution to the corre-

sponding Fokker-Planck equation (9), one has

d

dt

∫ ∥∥v∥∥2 dρt = ∫ σ2
∥∥v − ut∥∥2 − 2λ(v − ut) · v −

2

ϵ
∇G(v) · v dρt

=

∫
(σ2 − 2λ)

∥∥v∥∥2 + 2(λ− σ2)v · ut + dσ2
∥∥ut∥∥2 − 2

ϵ
∇G(v) · v dρt.

Since∫
v · ut dρt ≤

∫ ∥∥v∥∥ · ∥∥ut∥∥ dρt ≲ ∫ ∥∥v∥∥2 dρt + ∫ ∥∥ut∥∥2 dρt = ∫ ∥∥v∥∥2 dρt + ∥∥ut∥∥2
and ∥∥∇G(v)∥∥ ≲

∥∥v∥∥,
one can further deduce

d

dt

∫ ∥∥v∥∥2 dρt ≲ ∫ ∥∥v∥∥2 dρt + ∥∥ut∥∥2 ≲ ∫ ∥∥v∥∥2 dρt,
where in the last inequality, we used (49). Applying Gronwall’s inequality yields that∫ ∥∥v∥∥2 dρt is bounded and from the above inequality, the bound does not depend on ut
itself. Thus we’ have shown that

∥∥ut∥∥∞ is bounded by a uniform constant q. Theorem A.3
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then gives the existence.
Step 4 (Uniqueness):

Suppose we are given two fixed points of T : ut and ût. We use Vt and V̂t respectively to
represent the solutions of equation (41) with ut and ût plugged in. We also assume that

Vt and V̂t are defined in the same probability space. From the steps above, there exist
constants q > 0 and K > 0 such that∥∥ut∥∥∞,∥∥ût∥∥∞ < q (50)

and

sup
t∈[0,T ]

∫ ∥∥v∥∥4 dρt, sup
t∈[0,T ]

∫ ∥∥v∥∥4 dρ̂t < K, (51)

where ρt and ρ̂t are the distributions of Vt and V̂t respectively. Let us consider Zt = Vt− V̂t.
One has

Zt =Z0 − λ
∫ t

0

Zτ dτ + λ

∫ t

0

(uτ − ûτ ) dτ −
1

ϵ

∫ t

0

(
∇G

(
Vτ
)
−∇G

(
V̂τ
))
dτ

+ σ

∫ t

0

diag
((
Vτ − uτ

)
−
(
V̂τ − ûτ

))
dBτ .

Thus

E
[∥∥Zt

∥∥2]
≲ E

[∥∥Z0

∥∥2]+ E
[
(

∫ t

0

∥∥Zτ

∥∥ dτ)2]+ E
[
(

∫ t

0

∥∥uτ − ûτ∥∥ dτ)2]
+ E

[( ∫ t

0

∥∥∇G(Vτ )−∇G(V̂τ )∥∥ dτ)2]E[∥∥ ∫ t

0

diag
((
Vτ − uτ

)
−
(
V̂τ − ûτ

))
dBτ

∥∥2].
(52)

For E[(
∫ t

0

∥∥Zτ

∥∥ dτ)2], we have that

E
[
(

∫ t

0

∥∥uτ − ûτ∥∥ dτ)2] = E
[
(

∫ t

0

∥∥vα(ρτ )− vα(ρ̂τ )∥∥ dτ)2] ≤ tE
[ ∫ t

0

∥∥vα(ρτ )− vα(ρ̂τ )∥∥2 dτ],
(53)

where in the inequality, we used the fact that ut and ût are fixed points. For E[(
∫ t

0

∥∥∇G(Vτ )−
∇G(V̂τ )

∥∥ dτ)2], one has

E
[
(

∫ t

0

∥∥∇G(Vτ )−∇G(V̂τ )∥∥ dτ)2] ≲ E
[
(

∫ t

0

∥∥Vτ − V̂τ∥∥ dτ)2]
= E

[
(

∫ t

0

∥∥Zτ

∥∥ dτ)2] ≤ t · E
[ ∫ t

0

∥∥Zτ

∥∥2 dτ]. (54)
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Here we used the Lipschitz property of ∇G. For E[
∥∥ ∫ t

0
diag

((
Vτ−uτ

)
−
(
V̂τ− ûτ

))
dBτ

∥∥2].
Then

E
[∥∥ ∫ t

0

diag
((
Vτ − uτ

)
−
(
V̂τ − ûτ

))
dBτ

∥∥2]
= E

[ ∫ t

0

∥∥diag((Vτ − uτ)− (V̂τ − ûτ))∥∥2F dτ]
≲ E

[ ∫ t

0

∥∥Vτ − V̂τ∥∥2 dτ]+ E
[ ∫ t

0

∥∥uτ − ûτ∥∥2 dτ]
= E

[ ∫ t

0

∥∥Zτ

∥∥2 dτ]+ E
[ ∫ t

0

∥∥vα(ρτ )− vα(ρ̂τ )∥∥2 dτ],
(55)

where in the first equality, we used Itô’s Isometry. Thus combining (52), (53), (54) and
(55) yield

E
[∥∥Zt

∥∥2] ≲ E
[∥∥Z0

∥∥2]+ ∫ t

0

E
[∥∥Zτ

∥∥2] dτ + E
[ ∫ t

0

∥∥vα(ρτ )− vα(ρ̂τ )∥∥2 dτ].
We further notice that by Lemma A.2,∥∥vα(ρτ )− vα(ρ̂τ )∥∥ ≲ W2(ρτ , ρ̂τ ) ≤

√
E
[∥∥Vτ − V̂τ∥∥2] =√E

[∥∥Zτ

∥∥2].
So we can deduce

E
[∥∥Zt

∥∥2] ≲ E
[∥∥Z0

∥∥2]+ ∫ t

0

E
[∥∥Zτ

∥∥2] dτ + E
[ ∫ t

0

E
[∥∥Zτ

∥∥2] dτ]
≲ E

[∥∥Z0

∥∥2]+ ∫ t

0

E
[∥∥Zτ

∥∥2] dτ.
Then applying Gronwall’s inequality with the fact that E[

∥∥Z0

∥∥2] = 0 gives the uniqueness
result. □

A.3. Proof of Theorem 3.4. We first prove the following lemma.

Lemma A.4. Let E satisfy Assumption 1 and ρ0 ∈ P4(Rd). For any N ≥ 2, assume

that {(V i,N
t )t∈[0,T ]}Ni=1 is the unique solution to the particle system (7) with ρ⊗N

0 distributed

initial data {V i,N
0 }Ni=1. Then there exists a constant K > 0 independent of N such that

sup
i=1,...,N

{
sup

t∈[0,T ]

E
[∥∥V i,N

t

∥∥2 + ∥∥V i,N
t

∥∥4]+ sup
t∈[0,T ]

E
[∥∥vα(ρ̂Nt )∥∥2 + ∥∥vα(ρ̂Nt )∥∥4]

}
≤ K.

Proof. For each i, we have

dV i,N
t = −λ

(
V i,N
t − vα(ρ̂t)

)
dt− 1

ϵ
∇G(V i

t ) dt+ σdiag
(
V i,N
t − vα(ρ̂it)

)
dBi

t,

V i
0 ∼ ρ0.
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Now we pick p = 1 or p = 2. Then

E
∥∥V i,N

t

∥∥2p ≲E
∥∥V i,N

0

∥∥2p + E(
∫ t

0

∥∥V i,N
τ

∥∥ dτ)2p + E(
∫ t

0

∥∥vα(ρ̂Nτ )∥∥ dτ)2p
+ E

∥∥∫ t

0

diag
(
V i,N
τ

)
dBi

τ

∥∥2p + E
∥∥∫ t

0

diag
(
vα
(
ρ̂Nτ
))
dBi

τ

∥∥2p.
Here, we used Assumption 1 (4). Now by Cauchy’s inequality,

E(
∫ t

0

∥∥V i,N
τ

∥∥ dτ)2p ≤ tp · E(
∫ t

0

∥∥V i,N
τ

∥∥2 dτ)p
and

E(
∫ t

0

∥∥vα(ρ̂Nτ )∥∥ dτ)2p ≤ tp · E(
∫ t

0

∥∥vα(ρ̂Nτ )∥∥2 dτ)p.
Also, by Itô Isometry,

E
∥∥∫ t

0

diag
(
V i,N
τ

)
dBi

τ

∥∥2p = E(
∫ t

0

∥∥V i,N
τ

∥∥2 dτ)p
and

E
∥∥∫ t

0

diag
(
vα
(
ρ̂Nτ
))
dBi

τ

∥∥2p = E(
∫ t

0

∥∥vα(ρ̂Nτ )∥∥2 dτ)p.
Thus

E
∥∥V i,N

t

∥∥2p ≲ E
∥∥V i,N

0

∥∥2p + E(
∫ t

0

∥∥V i,N
τ

∥∥2 dτ)p + E(
∫ t

0

∥∥vα(ρ̂Nτ )∥∥2 dτ)p.
Further, by Hölder inequality,

E(
∫ t

0

∥∥V i,N
τ

∥∥2 dτ)p ≤ E
∫ t

0

∥∥V i,N
τ

∥∥2p dτ and E(
∫ t

0

∥∥vα(ρ̂Nτ )∥∥2 dτ)p ≤ E
∫ t

0

∥∥vα(ρ̂Nτ )∥∥2p dτ.
So we can deduce

E
∥∥V i,N

t

∥∥2p ≲ E
∥∥V i,N

0

∥∥2p + E
∫ t

0

∥∥V i,N
τ

∥∥2p dτ + E
∫ t

0

∥∥vα(ρ̂Nτ )∥∥2p dτ.
Thus

E
∫ ∥∥v∥∥2p dρ̂Nt ≲ E

∫ ∥∥v∥∥2p dρ̂N0 +

∫ t

0

(E
∫ ∥∥v∥∥2p dρ̂Nτ ) dτ + ∫ t

0

(E
∥∥vα(ρ̂Nτ )∥∥2p) dτ. (56)

Now by Lemma 3.3 in [5], one has∫ ∥∥v∥∥2 ωα(v)∥∥ωα

∥∥
L1(ρ̃Nτ )

dρ̂Nτ ≤ b1 + b2

∫ ∥∥v∥∥2 dρ̂Nτ . (57)
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Then we can calculate∥∥vα(ρ̂Nτ )∥∥2p = ∥∥∫ v · ωα(v)∥∥ωα

∥∥
L1(ρ̃Nτ )

dρ̂Nτ
∥∥2p

≤
(∫ ∥∥v∥∥ · ωα(v)∥∥ωα

∥∥
L1(ρ̃Nτ )

dρ̂Nτ

)2p
≤
(∫ ∥∥v∥∥2 · ωα(v)∥∥ωα

∥∥
L1(ρ̃Nτ )

· ωα(v)∥∥ωα

∥∥
L1(ρ̃Nτ )

dρ̂Nτ

)p
≤
(∫ ∥∥v∥∥2 · ωα(v)∥∥ωα

∥∥
L1(ρ̃Nτ )

dρ̂Nτ

)p
≤
(
b1 + b2

∫ ∥∥v∥∥2 dρ̂Nτ )p ≲ 1 +

∫ ∥∥v∥∥2p dρ̂Nτ ,
where in the second inequality, we used Cauchy’s inequality and in the fourth inequality,
we used (57) and in the last inequality, we used Hölder inequality. Combine the above
inequality and (56) leads to

E
∫ ∥∥v∥∥2p dρ̂Nt ≲ E

∫ ∥∥v∥∥2p dρ̂N0 +

∫ t

0

(
E
∫ ∥∥v∥∥2p dρ̂Nτ ) dτ + 1.

By applying Gronwall’s inequality, it follows that E
∫
|v|2p dρ̂Nt is bounded for t ∈ [0, T ],

and the bound does not depend on N . Also, we know that∥∥vα(ρ̂Nτ )∥∥2p ≲ 1 +

∫ ∥∥v∥∥2p dρ̂Nτ ,
which implies that

E
∥∥vα(ρ̂Nτ )∥∥2p ≲ 1 + E

∫ ∥∥v∥∥2p dρ̂Nt .
So E

∥∥vα(ρ̂Nt )∥∥2p is bounded for t ∈ [0, T ] and the bound does not depend on N . □

As in [24], we then make the following definition.

Definition A.5. Fix ϕ ∈ C2c (Rd). Define functional Fϕ : P(C[0, T ];Rd)→ R:

Fϕ(dµt) =
〈
ϕ, dµt

〉
−
〈
ϕ, dµ0

〉
+ λ

∫ t

0

〈(
v − vα(ρτ )

)
· ∇ϕ(v), dµτ

〉
dτ

+
1

ϵ

∫ t

0

〈
∇G(v) · ∇ϕ(v), dµτ

〉
dτ − σ2

2

∫ t

0

〈 d∑
k=1

(
v − vα(ρτ )

)2
k
∂kkϕ(v), dµτ

〉
dτ.

We can then prove the following proposition about the functional Fϕ defined above.

Proposition 2. Let E satisfy Assumption 1 and ρ0 ∈ P4(Rd). For any N ≥ 2, assume

that {(V i,N
t )}Ni=1 is the unique solution to (7) with ρ⊗N

0 distributed initial data {V i,N
0 }Ni=1.

There exists a constant C > 0 depending only on σ,K, T and
∥∥∇ϕ∥∥∞ such that

E
[
|Fϕ(ρ̂

N
t )|2

]
≤ C

N
.
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Proof. First we compute

Fϕ(ρ̂
N
t ) =

1

N

N∑
i=1

ϕ(V i,N
t )− 1

N

N∑
i=1

ϕ(V i,N
0 ) + λ

∫ t

0

1

N

N∑
i=1

(
V i,N
τ − vα

(
ρ̂Nτ
))
· ∇ϕ(V i,N

τ ) dτ

+
1

ϵ

∫ t

0

N∑
i=1

∇G(V i,N
τ ) · ∇ϕ(V i,N

τ ) dτ

− σ2

2

∫ t

0

1

N

N∑
i=1

d∑
k=1

(
V i,N
τ − vα

(
ρ̂Nτ
))2

kk
∂kkϕ(V

i,N
τ ) dτ.

On the other hand, the Itô-Doeblin formula gives

ϕ(V i,N
t )− ϕ(V i,N

0 ) =− λ
∫ t

0

(
V i,N
τ − vα

(
ρ̂Nτ
))
· ∇ϕ(V i,N

τ ) dτ − 1

ϵ

∫ t

0

∇G(V i,N
τ ) · ∇ϕ(V i,N

τ ) dτ

+ σ

∫ t

0

(
∇ϕ(V i,N

τ )
)T (

diag
(
V i,N
τ − vα

(
ρ̂Nτ
))
dBi

τ

)
+
σ2

2

∫ t

0

d∑
k=1

(
V i,N
τ − vα

(
ρ̂Nτ
))2

k
∂kkϕ(V

i,N
τ ) dτ.

Then one gets

Fϕ(ρ̂
N
t ) =

σ

N

∫ t

0

N∑
i=1

(
∇ϕ(V i,N

τ )
)T (

diag
(
V i,N
τ − vα

(
ρ̂Nτ
))
dBi

τ

)
.

Finally, we can compute

E
[
|Fϕ(ρ̂

N
t )|2

]
=

σ2

N2

N∑
i=1

E
[∣∣∣ ∫ t

0

N∑
i=1

(
∇ϕ(V i,N

τ )
)T

diag
(
V i,N
τ − vα

(
ρ̂Nτ
))
dBi

τ

∣∣∣]2
=

σ2

N2

N∑
i=1

E
[ ∫ t

0

N∑
i=1

∥∥(∇ϕ(V i,N
τ )

)T
diag

(
V i,N
τ − vα

(
ρ̂Nτ
))∥∥2

2
dτ
]

≤ σ2

N2

∥∥∇ϕ∥∥2∞ N∑
i=1

∫ t

0

E
[∥∥V 1,N

τ − vα
(
ρ̂Nτ
)∥∥2

2

]
dτ

≲
σ2

N2

∥∥∇ϕ∥∥2∞ N∑
i=1

∫ t

0

K dτ =
σ2

N2

∥∥∇ϕ∥∥2∞ N∑
i=1

tK ≤ T
σ2K

N

∥∥∇ϕ∥∥∞,
where in the second equality, we used Itô’s isometry and in the third inequality, we used
Lemma A.4. This completes the proof. □

We recall the Aldous criteria ([2], Section 34.3), which could prove the tightness of a
sequence of distributions:
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Lemma A.6 (The Aldous criteria). Let {V n}n∈N be a sequence of random variables defined
on a probability space (Ω,F ,P) and valued in C([0, T ];Rd). The sequence of probability
distributions {µV n}n∈N of {V n}n∈N is tight on C([0, T ];Rd) if the following two conditions
hold.
(Con1) For all t ∈ [0, T ], the set of distributions of V n

t , denoted by {µV n}n∈N, is tight as a
sequence of probability measures on Rd.
(Con2) For all ϵ > 0, η > 0, there exists δ0 > 0 and n0 ∈ N such that for all n ≥ n0 and
for all discrete-valued σ(V n

τ ; τ ∈ [0, T ])-stopping times β with 0 ≤ β+ δ0 ≤ T , it holds that

sup
δ∈[0,δ0]

P
(∥∥V n

β+δ − V n
β

∥∥ ≥ η
)
≤ ϵ.

Now we use the above lemma to prove the tightness of {L(ρ̂N)}N≥2.

Theorem A.7. Under the same assumption as in Lemma A.4, the sequence {L(ρ̂N)}N≥2

is tight in P
(
P(C([0, T ];Rd))

)
.

Proof. It suffices to prove that {L(V 1,N)}N≥2 is tight in P
(
C([0, T ];Rd)

)
due to Proposition

2.2(ii) in [33]. By Lemma A.6, one only needs to verify the two conditions in it. For

condition 1, let us fix ϵ > 0. Now we consider the compact set Uϵ = {
∥∥v∥∥2 ≤ K/ϵ} ,where

K is the constant in Lemma A.4. Then by Markov’s inequality,

L(V 1,N
t )(U c

ϵ ) = P
(∥∥V 1,N

t

∥∥ > ϵ

K

)
≤
ϵE
[∥∥V 1,N

t

∥∥2]
K

≤ ϵ

for any N ≥ 2, where in the last inequality we used Lemma A.4. Thus condition 1 is
verified.

For condition 2, we fix ϵ > 0 and η > 0. Notice that

V 1,N
β+δ − V

1,N
β =− λ

∫ β+δ

β

(
V 1,N
τ − vα

(
ρ̂Nτ
))
dτ + σ

∫ β+δ

β

diag
(
V 1,N
τ − vα

(
ρ̂Nτ
))
dB1

τ

− 1

ϵ

∫ β+δ

β

∇G(V 1,N
τ ) dτ.

(58)

Following the same steps in the proof of Lemma 2.1 in [24],

E
[∥∥λ∫ β+δ

β

(
V 1,N
τ − vα

(
ρ̂Nτ
))
dτ
∥∥2] ≤ 2TKλ2δ (59)

and

E
[∥∥σ ∫ β+δ

β

diag
(
V 1,N − vα

(
ρ̂Nτ
))
dB1

τ

∥∥2] ≤ σ2
√
8δTK. (60)
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Also, we can compute∥∥1
ϵ

∫ β+δ

β

∇G(V 1,N
τ ) dτ

∥∥2 ≤ 1

ϵ2

∫ β+δ

β

∥∥∇G(V 1,N
τ )

∥∥ dτ
≲
(∫ β+δ

β

∥∥V i,N
τ

∥∥ dτ)2 ≤ δ

∫ β+δ

β

∥∥V i,N
τ

∥∥2 dτ,
where in the second inequality we used Assumption 1 (4). Thus

E
[∥∥1
ϵ

∫ β+δ

β

∇G(V 1,N
τ ) dτ

∥∥2] ≲ δE
[ ∫ β+δ

β

∥∥V i,N
τ

∥∥2 dτ]
= δ

∫ β+δ

β

E
∥∥V i,N

τ

∥∥2 dτ ≲ δ

∫ β+δ

β

dτ = δ2

where we used Lemma A.4. Combining the above inequality and (58), (59) and (60), we
can conclude

E
[∥∥V 1,N

β − V 1,N
β+δ

∥∥2] ≲ O(
√
δ).

Then one can deduce

P(
∥∥V 1,N

β − V 1,N
β+δ

∥∥ > η) ≤
E
[∥∥V 1,N

β − V 1,N
β+δ

∥∥2]
η

≲
O(
√
δ)

η
.

Choose δ0 small enough finishes the proof. □

By Shorokhod’s lemma, for every convergent subsequence of {ρ̂Nt }N∈N, which is denoted
by the sequence itself for simplicity and has ρt as limit, one can find a probability space
space (Ω,F ,P) on which ρ̂Nt converges to ρt as random variables valued in P(C[0, T ];Rd).
We use VN to denote the corresponding random variable of ρ̂Nt and V to denote the cor-
responding random variable of ρt. Moreover, by the dominated convergence theorem, one
has 〈

ϕ, dρ̂Nt − dρt
〉
→ 0 (61)

almost surely for fixed t ∈ [0, T ] and ϕ ∈ Cb(Rd).
After all these preparations, we now prove Theorem 3.4.

Proof of Theorem 3.4. We first show that every convergent sequence converges to a solution
of (9). Now suppose we have a convergent subsequence of {ρ̂Nt }N∈N, which is denoted by
the sequence itself for simplicity and has ρt as limit. Also, we use VN and V to denote
the corresponding random variables generated by Shorokhod’s lemma as mentioned above.
We verify that ρt is a solution to the Fokker-Planck equation (9).

For continuity, we have that for any ϕ ∈ C2c (Rd) and tn → t:〈
ϕ, dρtn

〉
=

∫
ϕ
(
V (tn)

)
dP→

∫
ϕ
(
V (t)

)
dP =

〈
ϕ, dρt

〉
.
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To prove ρt satisfies the Fokker-Planck equation (9), we first prove the following four
limits:

(1) E
[(〈

ϕ, ρ̂Nt

〉
−
〈
ϕ, dρ̂0

〉)
−
(〈
ϕ, dρt

〉
−
〈
ϕ, dρ0

〉)]
converges to 0 as N →∞.

(2) E
[ ∫ t

0

〈(
v−vα

(
ρ̂Nτ
))
·∇ϕ(v), dρ̂Nτ

〉
dτ−

∫ t

0

〈(
v−vα

(
ρ̂Nτ
))
·∇ϕ(v), dρτ

〉
dτ

]
converges

to 0 as N →∞.

(3) E
[ ∫ t

0

〈∑d
k=1

(
v−vα

(
ρ̂Nτ
))2

k
∂kkϕ(v), dρ̂

N
τ

〉
dτ−

∫ t

0

〈∑d
k=1

(
v−vα(ρτ )

)2
k
∂kkϕ(v), dρτ

〉
dτ

]
converges to 0 as N →∞.

(4) E
[ ∫ t

0

〈
∇G(v) · ∇ϕ(v), dρ̂Nτ

〉
dτ −

∫ t

0

〈
∇G(v) · ∇ϕ(v), dρτ

〉
dτ

]
converges to 0 as

N →∞.

The first three limits can be proved using the same methods as in Theorem 3.3 in [24] and
the last one is a direct result of (61). Combining the above four limits gives

E
[
Fϕ(ρt)− Fϕ(ρ̂

N
t )
]
= 0.

Then we can deduce∣∣∣E[Fϕ(ρt)
]∣∣∣ ≤ lim

N→∞

∣∣∣E[Fϕ(ρt)− Fϕ(ρ̂
N
t )
]∣∣∣+ ∣∣∣E[Fϕ(ρ̂

N
t )
]∣∣∣ ≤ 0 + lim

N→∞

√
C

N
= 0,

where in the last inequality, we used Proposition 2. Thus Fϕ(ρt) = 0 almost surely, which
implies that ρt is a solution to the corresponding Fokker-Planck equation (9).
Then we utilize Lemma A.9 to establish that every convergent subsequence converges to

the same limit: the unique solution to (9). Combining with Theorem A.7, we deduce that
{ρ̂Nt }N∈N converges and the limit is exactly the solution to (9). □

A.4. Some auxiliary results used in the proof of Theorem 3.4.

Theorem A.8. For ∀T > 0, let bt ∈ C
(
[0, T ];Rd

)
and ρ0 ∈ P2(Rd). The following linear

PDE

∂tρt = λ∇ ·
((

(v − bt) +
1

ϵ
∇G(v)

)
ρt

)
+
σ2

2

d∑
k=1

∂xkxk

(
(v − bt)2kρt

)
(62)

has a unique weak solution ρt ∈ C([0, T ];P2(Rd)).

Proof. We can obtain a solution to (62) as the law of the solution to the associated linear
SDE to (62). Thus we have the existence result. For uniqueness, let us fix t0 ∈ [0, T ] and
ψ ∈ C∞c (Rd). We then can solve the following backward PDE

∂tht =
(
λ(v − bt) +

1

ϵ
∇G(v)

)
· ∇ht −

σ2

2

d∑
k=1

(v − bt)2k∂xkxk
ht,

(t, v) ∈ [0, t0]× Rd;ht0 = ψ.
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It has a classical solution:

ht = E
[
ψ(V t,v

t0 )
]
, t ∈ [0, t0],

where (V t,x
τ )0≤t≤s≤t0 is the strong solution to

dV t,v
τ = −

(
λ(V t,v

τ − bτ ) +
1

ϵ
∇G(V t,v

τ )
)
dτ + σdiag

(
V t,v
τ − bτ

)
dBτ , V

t,v
t = v.

Suppose ρ1 and ρ2 are two weak solutions to (62). Consider δρ = ρ1 − ρ2. Then〈
ht0 , δρt0

〉
=

∫ t0

0

〈
∂τhτ , δρτ

〉
dτ − λ

∫ t0

0

〈
(v − bτ )∇hτ , δρτ

〉
dτ

− 1

ϵ

∫ t0

0

〈
∇G · ∇hτ , δρτ

〉
dτ +

σ2

2

∫ t0

0

〈 d∑
k=1

(v − bτ )2k∂kkhτ , δρτ
〉
dτ

=

∫ t0

0

〈
∂τhτ , δρτ

〉
dτ +

∫ t0

0

〈
−∂τhτ , δρτ

〉
dτ = 0.

This implies that
∫
ψδρt0 = 0 for any chosen ψ ∈ C∞c (Rd) and t0 ∈ [0, T ]. Thus δρt = 0.

This proves the uniqueness. □

Lemma A.9. Assume that ρ1, ρ2 ∈ C
(
[0, T ];P2(Rd)

)
are two weak solutions to PDE (9)

in the sense of Definition 3.2 with the same initial data ρ0. Then it holds that

sup
t∈[0,T ]

W2

(
ρ1t , ρ

2
t

)
= 0,

where W2 is the 2-Wasserstein distance.

Proof. Given ρ1 and ρ2, we first solve the following two linear SDEs

dṼ i
t = −λ

(
Ṽ i
t − vα(ρit)

)
dt− 1

ϵ
∇Gdt+ σdiag

(
Ṽ i
t − vα(ρit)

)
dBt,

V̂ i
0 ∼ ρ0

for i = 1, 2. We use ρ̃it to denote the law of Ṽ i
t for i = 1, 2. Thus ρ̃it solves

∂tρ̃
i
t = λdiv

(
(v − vα(ρit) +

1

ϵ
∇G)ρ̃it

)
+
σ2

2

d∑
k=1

∂xkxk

(∥∥v − vα(ρit)∥∥2ρ̃it),
ρ̃i0 = ρ0

in the weak sense for i = 1, 2. Moreover, ρi solves the above PDE since we assumed that
ρi solves (9). But from Theorem A.9, the solution to the above PDE is unique for i = 1, 2.
This implies that ρ̃it = ρit for i = 1, 2. As a result, Ṽ 1

t and Ṽ 2
t both solve (8). By Theorem

3.3, it holds that

sup
t∈[0,T ]

E
[
|Ṽ 1

t − Ṽ 2
t |2
]
= 0.
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Then one has

sup
t∈[0,T ]

W2

(
ρ1, ρ2

)
= sup

t∈[0,T ]

W2

(
ρ̃1, ρ̃2

)
≤ sup

t∈[0,T ]

E
[
|Ṽ 1

t − Ṽ 2
t |2
]
= 0

This completes the proof. □

Appendix B. Lemma B.1

Lemma B.1. There exist non-negative increasing function τ2(x), τ3(x) and τ4(x) mapping
from R to R with limx→0 τi(x) = 0 for i = 2, 3, 4 so that the following hold for ∀u, r ≥ 0
small enough:

|Eu| = |E(vu)| ≤ τ2(u);

|Eur − Er| ≤ τ3(max{u, r});
|Eur − E0r | ≤ τ4(max{u, r}),

where

Eur = max
v∈B∞(vu,r)∩{G(v)=u}

E(v)

and

Er = max
v∈B∞(v∗,r)

E(v).

Proof. We first prove the existence of τ2. To begin with, one deduces

|Eu| = |E(vu)| = |E(vu)− 0| = |E(vu)− E(v∗)| ≤ C
∥∥vu − v∗∥∥β∞ ≤ Cτβ1 (u),

where the first inequality comes from Assumption 2 (A2) and the second inequality comes

from Assumption 2 (C1). Then by taking τ2(x) to be τβ1 (x) will finish the proof of the
existence of τ2.

For the existence of τ3, we can first pick v1 ∈ B∞(vu, r) ∩ {G(v) = u}, v2 ∈ B∞(v∗, r)
and then do the following calculation:

|E(v1)− E(v2)| ≤ C
∥∥v1 − v2∥∥β∞

≲ (
∥∥v1 − vu∥∥β∞ +

∥∥vu − v∗∥∥β∞ +
∥∥v∗ − v2∥∥β∞)

≤ (rβ + τ1(u)
β + rβ)

≤
(
max{u, r}β + τ1(max{u, r})β +max{u, r}β

)
,

where in the first inequality, we used Assumption 2 (A2) and in the third inequality, we
used Assumption 2 (C1). Then one has

sup
v1∈B(vu,r)∩{G(v)=u},

v2∈B(v∗,r)

|E(v1)− E(v2)| ≲
(
max{u, r}β + τ1(max{u, r})β +max{u, r}β

)
.

So

|Eur − Er| ≲
(
max{u, r}β + τ1(max{u, r})β +max{u, r}β

)
.
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Therefore, selecting τ3(x) as a scalar multiple of 2xβ + τβ1 (x) will suffice. One can apply
the same method to prove the existence of τ4(x). □

Appendix C. Explanations for expanding the test function space

We follow the same argument as in [15]. To start with, for any ϕ ∈ C2∗(Rd), one apply
Itǒ’s formula to V̄t to get

dϕ(V̄t) =∇ϕ
(
V̄t
)
·
((
− λ
(
V̄t − vα

(
ρt
))
− 1

ϵ
∇G

(
V̄t
))
dt

)
+

1

2
σ2

d∑
k=1

∂kkϕ
(
V̄t
)(
V̄t − vα

(
ρt
))2

k
dt+ σ∇ϕ

(
V̄t
)T

diag
(
V̄t − vα

(
ρt
))
dBt.

Note that E
∫ t

0
σ∇ϕ

(
V̄t
)T

diag
(
V̄t− vα

(
ρt
))
dBt = 0 by applying Theorem 3.2.1 (iii) in [28]

due to the facts that ϕ ∈ C2∗
(
Rd
)
and ρt ∈ C

(
[0, T ],P4

(
Rd
))

. Taking the expectation and

applying Fubini’s theorem gives

d

dt
Eϕ
(
V̄t
)
=− λE∇ϕ

(
V̄t
)
·
(
− λ
(
V̄t − vα

(
ρt
))
− 1

ϵ
∇G

(
V̄t
))

+
1

2
σ2E

d∑
k=1

∂kkϕ
(
V̄t
)(
V̄t − vα

(
ρt
))2

k
,

which is exactly the first expression in Definition 3.2 (ii) with ϕ being a function in C2∗
(
Rd
)
.

Appendix D. Proof of Lemma 4.2

Proof. Substituting ϕ(v) =
1

2
∥v − v∗∥2 into Definition 3.2 gives

d

dt
V
(
ρt
)
= −λ

∫ 〈
v − vα

(
ρt
)
, v − v∗

〉
dρt −

1

ϵ

∫ 〈
∇G, v − v∗

〉
dρt +

σ2

2

∫
∥v − v(ρt)∥2 dρt.

(63)

Notice that

− λ
∫ 〈

v − vα
(
ρt
)
, v − v∗

〉
dρt(v)

= −λ
∫ 〈

v − v∗, v − v∗
〉
dρt(v) + λ

∫ 〈
v − v∗, vα

(
ρt
)
− v∗

〉
dρt(v)

= −2λV
(
ρt
)
+ λ
〈∫

(v − v∗) dρt(v), vα
(
ρt
)
− v∗

〉
.
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Then one can deduce

− λ
∫ 〈

v − vα
(
ρt
)
, v − v∗

〉
dρt(v) ≤ −2λV

(
ρt
)
+ λ∥

∫
(v − v∗) dρt(v)∥2 · ∥vα

(
ρt
)
− v∗∥2

≤− 2λV
(
ρt
)
+ λ

∫
∥(v − v∗)∥2 dρt(v) · ∥vα

(
ρt
)
− v∗∥2

≤− 2λV
(
ρt
)
+ λ
√

2V
(
ρt
)
· ∥vα

(
ρt
)
− v∗∥2,

(64)
where the first and third inequalities come from Cauchy’s inequality and the second in-
equality is a consequence of Minkowski’s inequality.

For the last term on the right-hand side of (63), we can do the following estimate,

σ2

2

∫
∥v − v(ρt)∥22 dρt(v)

=
σ2

2

(∫
∥v − v∗∥22 dρt(v)− 2

〈∫
(v − v∗) dρt(v), vα

(
ρt
)
− v∗

〉
+ ∥vα

(
ρt
)
− v∗∥22

)
≤σ2

(
V
(
ρt
)
+

∫
∥v − v∗∥2 dρt(v) · ∥vα

(
ρt
)
− v∗∥2 +

1

2
∥vα
(
ρt
)
− v∗∥22

)
≤σ2

(
V
(
ρt
)
+
√

2V
(
ρt
)
∥vα
(
ρt
)
− v∗∥2 +

1

2
∥vα
(
ρt
)
− v∗∥22

)
,

(65)

where in the first inequality, we use Cauchy’s inequality and Minkowski’s inequality and
in the second inequality, we use Cauchy’s inequality again. Plugging (64) and (65) back
into (63) finishes the proof. □

Appendix E. Lemmas used in Laplace’s principle

E.1. Proof of Lemma 4.3.

Proof. Let r̃ =
(q + E0r )µ

η
. One can verify that

(1) r̃ ≥ r
(2) E(v)− E0r ≥ q for ∀v ∈ {G = 0} ∩B∞(v∗, r̃)c.

For (1), we begin by computing directly:

r̃ =
(q + E0r )µ

η
≥ (E0r )µ

η
=

(E0r − E0)µ

η
,

where the last equality is because E0 = E(v∗) = 0. Then for any v ∈ B∞(v∗, r) ∩ {G = 0},
by the definition of E0r , in Lemma B.1, one has

(E0r − E0)µ

η
≥

(E(v)− E0)µ

η
.



CONSENSUS METHOD FOR CONSTRAINED OPTIMIZATION 47

Then we use Assumption 2 (C2) to get

r̃ ≥
(E(v)− E0)µ

η
≥
∥∥v − v∗∥∥∞.

By Assumption 2 (C1), ∂B∞(v∗, r) ∩ {G = 0} ≠ ∅, which leads to

sup
v∈B∞(v∗,r)∩{G=0}

∥∥v − v∗∥∥∞ = r.

Since the above inequality holds for ∀v ∈ B∞(v∗, r) ∩ {G = 0}, one then has r̃ ≥ r, which
completes the proof of the first one. And for (2), for all v ∈ {G = 0} ∩B∞(v∗, r)c, we can
compute:

E(v)− E0r = E(v)− E0 − (E0r − E0)
≥ (η

∥∥v − v∗∥∥∞)1/µ − (E0r − E0) ≥ (ηr̃)1/µ − (E0r − E0) = q + E0 = q,

where the first inequality comes from Assumption 2 (C2), the second inequality is due to
v ∈ B∞(v∗, r̃)c, the third inequality is because of the definition of r̃ and the last equality
is because we assumed E(v∗) = 0. This completes the proof of the second one.

Then we have∫
{G=0}

∥∥v − v∗∥∥∞∥∥ωα

∥∥
L1(ρt)

e−αE(v) dρt(v) =

∫
{G=0}∩B∞(v∗,r̃)

∥∥v − v∗∥∥∞∥∥ωα

∥∥
L1(ρt)

e−αE(v) dρt(v)

+

∫
{G=0}∩B∞(v∗,r̃)c

∥∥v − v∗∥∥∞∥∥ωα

∥∥
L1(ρt)

e−αE(v) dρt(v).

For the former term, we have the following estimate∫
{G=0}∩B∞(v∗,r̃)

∥∥v − v∗∥∥∞∥∥ωα

∥∥
L1(ρt)

e−αE(v) dρt(v) ≤ r̃

∫
{G=0}∩B∞(v∗,r̃)

1∥∥ωα

∥∥
L1(ρt)

e−αE(v) dρt(v) ≤ r̃.

(66)

For the latter term, we first notice that∥∥ωα

∥∥
L1(ρt)

=

∫
e−αE(v) dρt(v) ≥

∫
B∞(v∗,r)

e−αE(v) dρt(v) ≥
∫
B∞(v∗,r)

e−αEr dρt(v)

= e−αErρt
(
B∞(v∗, r)

)
.

Here the second inequality is because of the definition of Er in Lemma B.1. So∥∥ωα

∥∥
L1(ρt)

≥ e−αErρt
(
B∞(v∗, r)

)
(67)
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holds true for any choice of α and r. Then one can deduce∫
{G=0}∩B∞(v∗,r̃)c

∥∥v − v∗∥∥∞∥∥ωα

∥∥
L1(ρt)

e−αE(v) dρt(v)

≤
∫
{G=0}∩B∞(v∗,r̃)c

∥∥v − v∗∥∥∞
ρt
(
B∞(v∗, r)

)e−α
(
E(v)−Er

)
dρt(v)

≤
∫
{G=0}∩B∞(v∗,r̃)c

∥∥v − v∗∥∥∞
ρt
(
B∞(v∗, r)

)e−α
(
E(v)−E0

r−τ3(r)
)
dρt(v)

≤
∫
{G=0}

∥∥v − v∗∥∥∞
ρt
(
B∞(v∗, r)

)e−α
(
q−τ3(r)

)
dρt(v),

where in the second inequality, we used Lemma B.1 and in the third third inequality, we
used the fact (2) that E(v)− E0r ≥ q for ∀v ∈ {G = 0} ∩B∞(v∗, r̃)c. Thus∫

{G=0}∩B∞(v∗,r̃)c

∥∥v − v∗∥∥∞∥∥ωα

∥∥
L1(ρt)

e−αE(v) dρt(v) ≤
∫
{G=0}

∥∥v − v∗∥∥∞
ρt
(
B∞(v∗, r)

)e−α
(
q−τ3(r)

)
dρt(v).

Combining the above inequality and (66), we can get∫
{G=0}

∥∥v − v∗∥∥∞∥∥ωα

∥∥
L1(ρt)

e−αE(v) dρt(v) ≤
(q + E0r )µ

η
+

e−α
(
q−τ3(r)

)
ρt
(
B∞(v∗, r)

) ∫
{G=0}

∥∥v − v∗∥∥∞ dρt(v).

Since
∥∥ · ∥∥∞ ≤ ∥∥ · ∥∥2 ≤ √d∥∥ · ∥∥2, we have∫

{G=0}

∥∥v − v∗∥∥
2∥∥ωα

∥∥
L1(ρt)

e−αE(v) dρt(v) ≤
√
d(q + E0r )µ

η
+

√
de−α

(
q−τ3(r)

)
ρt
(
B∞(v∗, r)

) ∫
{G=0}

∥∥v − v∗∥∥
2
dρt(v).

This completes the proof. □

E.2. Proof of Lemma 4.4.

Proof. We first can deduce∫
{G∈(0,u)}

∥∥v − v∗∥∥∞∥∥ωα

∥∥
L1(ρt)

e−αE(v) dρt(v) =

∫
{G∈(0,u)}

∥∥v − v∗∥∥∞∥∥ωα

∥∥
L1(ρt)

∥∥∇G∥∥
2

e−αE(v)∥∥∇G∥∥
2
ρt dv

=

∫ u

0

dũ

∫
{G(v)=ũ}

∥∥v − v∗∥∥∞∥∥ωα

∥∥
L1(ρt)

∥∥∇G∥∥
2

e−αE(v)ρt dHd−1(v).

Here, the first equality is because of Assumption 2 (B3) that ∇G ̸= 0 and the second
equality comes from the co-area formula. dHd−1(v) is the (d − 1) dimensional Hausdorff
measure.

Now we fix 0 < ũ < u and study the inner integral. We pick r̃ũ =
(q + E ũr − Eũ)µ

η
. One

can easily use Assumption 2 (C2) to verify the following facts:
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(1) r̃ũ ≥ r.
(2) E(v)− E ũr ≥ q for v ∈ B∞(vũ, r̃ũ)

c ∩ {G(v) = ũ}.

(3) r̃ũ ≤ r̃ =

(
q + E0r + τ2(u) + τ4(max{u, r})

)µ
η

.

For the proof of the first two facts, one can use the same method we used at the beginning
of the proof of Lemma 4.3 and details are omitted. For (3), one can prove it as follows:

r̃ũ =

(
q + E ũr − Eũ

)µ
η

=

(
q + E0r + (E ũr − E0r )− Eũ

)µ
η

≤
(
q + E0r + τ4(max{ũ, r})− τ2(ũ)

)µ
η

≤
(
q + E0r + τ4(max{u, r})− τ2(u)

)µ
η

,

where the two inequalities are because of Assumption 2 (C2) and Lemma B.1.
Then by the triangle inequality, one obtains

∫
{G(v)=ũ}

∥∥v − v∗∥∥∞∥∥ωα

∥∥
L1(ρt)

∥∥∇G∥∥
2

e−αE(v)ρt dHd−1(v)

≤
∫
{G(v)=ũ}∩B∞(vũ,r̃ũ)

∥∥v − vũ∥∥∞∥∥ωα

∥∥
L1(ρt)

∥∥∇G∥∥
2

e−αE(v)ρt dHd−1(v)

+

∫
{G(v)=ũ}∩B∞(vũ,r̃ũ)c

∥∥v − vũ∥∥∞∥∥ωα

∥∥
L1(ρt)

∥∥∇G∥∥
2

e−αE(v)ρt dHd−1(v)

+

∫
{G(v)=ũ}

∥∥v∗ − vũ∥∥∞∥∥ωα

∥∥
L1(ρt)

∥∥∇G∥∥
2

e−αE(v)ρt dHd−1(v).

Thus one needs to bound the above three terms. For the first one,

∫
{G(v)=ũ}∩B∞(vũ,r̃ũ)

∥∥v − vũ∥∥∞∥∥ωα

∥∥
L1(ρt)

∥∥∇G∥∥
2

e−αE(v)ρt dHd−1(v)

≤ r̃ũ

∫
{G(v)=ũ}

1∥∥ωα

∥∥
L1(ρt)

∥∥∇G∥∥
2

e−αE(v)ρt dHd−1(v)

≤ r̃

∫
{G(v)=ũ}

1∥∥ωα

∥∥
L1(ρt)

∥∥∇G∥∥
2

e−αE(v)ρt dHd−1(v).
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For the second one,

∫
{G(v)=ũ}∩B∞(vũ,r̃ũ)c

∥∥v − vũ∥∥∞∥∥ωα

∥∥
1

∥∥∇G∥∥
2

e−αE(v)ρt dHd−1(v)

≤
∫
{G(v)=ũ}∩B∞(vũ,r̃ũ)c

∥∥v − vũ∥∥∞
ρt
(
B∞(v∗, r)

)∥∥∇G∥∥
2

e−α
(
E(v)−Er

)
ρt dHd−1(v)

≤
∫
{G(v)=ũ}∩B∞(vũ,r̃ũ)c

∥∥v − vũ∥∥∞
ρt
(
B∞(v∗, r)

)∥∥∇G∥∥
2

e−α
(
E(v)−E ũ

r −τ3(max{ũ,r})
)
ρt dHd−1(v)

≤
∫
{G(v)=ũ}∩B∞(vũ,r̃ũ)c

∥∥v − vũ∥∥∞
ρt
(
B∞(v∗, r)

)∥∥∇G∥∥
2

e−α
(
E(v)−E ũ

r −τ3(max{u,r})
)
ρt dHd−1(v)

≤
∫
{G(v)=ũ}∩B∞(vũ,r̃ũ)c

∥∥v − vũ∥∥∞
ρt
(
B∞(v∗, r)

)∥∥∇G∥∥
2

e−α
(
q−τ3(max{u,r})

)
ρt dHd−1(v)

≤ e−α
(
q−τ3(max{u,r})

)
ρt
(
B∞(v∗, r)

) ∫
{G(v)=ũ}

∥∥v − vũ∥∥∞∥∥∇G∥∥
2

ρt dHd−1(v),

where in the first inequality above, we used (67) and in the second and third inequalities
above, we used Lemma B.1 that |Eur − Er| ≤ τ3(max{u, r}) and the assumption that τ3 is
an increasing function. In the fourth inequality, we used the fact (2) that E(v) − E ũr ≥ q
for v ∈ B(vũ, r̃ũ)

c ∩ {G(v) = ũ}.
For the third term,

∫
{G(v)=ũ}

∥∥v∗ − vũ∥∥∞∥∥ωα

∥∥
L1(ρt)

∥∥∇G∥∥
2

e−αE(v)ρt dHd−1(v)

=
∥∥v∗ − vũ∥∥∞ ∫

{G(v)=ũ}

1∥∥ωα

∥∥
L1(ρt)

∥∥∇G∥∥
2

e−αE(v)ρt dHd−1(v)

≤ τ1(ũ)

∫
{G(v)=ũ}

1∥∥ωα

∥∥
L1(ρt)

∥∥∇G∥∥
2

e−αE(v)ρt dHd−1(v)

≤ τ1(u)

∫
{G(v)=ũ}

1∥∥ωα

∥∥
L1(ρt)

∥∥∇G∥∥
2

e−αE(v)ρt dHd−1(v),
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where in the first and second inequalities, we used Assumption 2 (C1) that
∥∥vu−v∗∥∥ ≤ τ1(u)

and the fact that τ1 is an increasing function. Thus∫
{G(v)=ũ}

∥∥v − v∗∥∥∞∥∥ωα

∥∥
L1(ρt)

∥∥∇G∥∥
2

e−αE(v)ρt dHd−1(v)

≤ r̃

∫
{G(v)=ũ}

1∥∥ωα

∥∥
L1(ρt)

∥∥∇G∥∥
2

e−αE(v)ρt dHd−1(v)

+
e−α
(
q−τ3(max{u,r})

)
ρt
(
B∞(v∗, r)

) ∫
{G(v)=ũ}

∥∥v − vũ∥∥∞∥∥∇G∥∥
2

ρt dHd−1(v)

+ τ1(u)

∫
{G(v)=ũ}

1∥∥ωα

∥∥
1

∥∥∇G∥∥
2

e−αE(v)ρt dHd−1(v).

We can integrate the above inequality with respect to ũ from 0 to u to get∫
{G∈(0,u)}

∥∥v − v∗∥∥∞∥∥ωα

∥∥
L1(ρt)

e−αE(v) dρt(v)

≤
(
r̃ + τ1(u)

) ∫ u

0

dũ

∫
{G(v)=ũ}

1∥∥ωα

∥∥
L1(ρt)

∥∥∇G∥∥
2

e−αE(v)ρt dHd−1(v)

+
e−α
(
q−τ3(max{u,r})

)
ρt
(
B∞(v∗, r)

) ∫ u

0

dũ

∫
{G(v)=ũ}

∥∥v − vũ∥∥∞∥∥∇G∥∥
2

ρt dHd−1(v)

= r̃ + τ1(u) +
e−α
(
q−τ3(max{u,r})

)
ρt
(
B∞(v∗, r)

) ∫
{G∈(0,u)}

∥∥v − vG(v)

∥∥
∞ dρt(v),

where in the equality, we used the co-area formula again and the definition of ωα. Then
combining with the fact that

∥∥ · ∥∥∞ ≤ ∥∥ · ∥∥2 ≤ √d∥∥ · ∥∥2 finishes the proof. □

Appendix F. The Complete Proof of Lemma 4.5

Proof. Since ϕr ≤ 1, one can show that

ρt
(
B(v∗, r)

)
≥
∫
ϕr(v) dρt(v).

So it suffices to find a lower bound for
∫
ϕr(v) dρt(v). To do this, since ϕr ∈ C2∗(Rd), one

can plug ϕr into the Definition (3.2) to get that

d

dt

∫
ϕr(v) dρt(v) =

∫ (
T1(v) + T2(v) + T3(v)

)
dρt(v),

where

T1(v) = −λ
(
v − vα

(
ρt
))
· ∇ϕr(v),
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T2(v) =
σ2

2

d∑
k=1

(
v − vα

(
ρt
))2

k
∂kkϕr(v)

and

T3(v) = −
1

ϵ

∫ 〈
∇G,∇ϕ

〉
.

One can calculate directly that

∇ϕr(v) = −2r2
v − v∗(

r2 −
∥∥v − v∗∥∥2)2ϕr(v),

∂kkϕr(v) = 2r2
(
2
(
2(v − v∗)2k − r2

)
(v − v∗)2k − d

(
r2 − (v − v∗)2k

)2(
r2 − (v − v∗)2k

)4 )
ϕr(v).

By the expression of ∇ϕr, one knows that T3 ≥ 0 because of Assumption 2 (B1). Thus
wone only has to find the lower bound of T1 and T2. The details of bounding them are
exactly the same as [16] Proposition 2. Following the same steps, it turns out∫ (

T1(v) + T2(v)
)
dρt(v) ≥ −a

∫
ϕr(v) dρt(v),

where a is the constant defined in the statement of Theorem 4.5. Thus

d

dt

∫
ϕr(v) dρt(v)

=

∫ (
T1(v) + T2(v) + T3(v)

)
dρt(v) ≥

∫ (
T1(v) + T2(v)

)
dρt(v) ≥ −a

∫
ϕr(v) dρt(v).

Then applying Gronwall’s inequality will finish the proof. □

Appendix G. Proof of Lemma 4.6

Proof. Let B = supt∈[0,T ]

∥∥vα(ρt) − v∗
∥∥
2
and B̃ = supt∈[0,T ] V

(
ρt
)
. Also, because of As-

sumption 2 (B2) that G(v) ∈ C2
∗(Rd) and G(v) ≲

∥∥∇G(v)∥∥2
2
, one can find some positive

constant c̃ such that

|∂kkG(v)| ≤ c̃,
∥∥∇G(v)∥∥ ≤ c̃

(
1 +

∥∥v − v∗∥∥) (68)

and

G(v) ≤ c̃
∥∥∇G(v)∥∥2. (69)
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Plug G into Definition 3.2 gives

d

dt

∫
Gdρt(v) = − λ

∫ 〈
v − vα

(
ρt
)
,∇G

〉
dρt(v) +

σ2

2

∫ d∑
k=1

(
v − vα

(
ρt
))2

k
∂kkGdρt(v)

− 1

ϵ

∫ ∥∥∇G∥∥2
2
dρt(v)

≤ − λ
∫ 〈

v − v∗,∇G
〉
dρt(v)− λ

∫ 〈
v∗ − vα

(
ρt
)
,∇G

〉
dρt(v)

+ σ2

∫ d∑
k=1

(
(v − v∗)2k +

(
v∗ − vα

(
ρt
))2

k

)
∂kkGdρt(v)−

1

ϵ

∫ ∥∥∇G∥∥2
2
dρt(v).

The first term is non-positive because of Assumption 2 (B1) and the second term can be
bounded as follows

−λ
∫ 〈

v∗ − vα
(
ρt
)
,∇G

〉
dρt(v) ≤ λ

∫ ∥∥v∗ − vα(ρt)∥∥∥∥∇G∥∥ dρt(v)
≤ λ

∫
B
∥∥∇G∥∥ dρt(v)

≤ λBc̃

∫ (
1 +

∥∥v − v∗∥∥) dρt(v)
≤ λBc̃

(
1 +

√
2B̃
)
,

where the third inequality above is due to (68). The third term is bounded above by

c̃σ2(B̃ + B2) and the fourth term is upper bounded by − 1

c̃ϵ

∫
Gdρt(v) because of (69).

Thus one has

d

dt

∫
Gdρt(v) ≤ λBc̃

(
1 +

√
2B̃
)
+ c̃σ2

(
B̃ +B2

)
− 1

ϵc̃

∫
Gdρt(v).

We use D to denote λBc̃
(
1 +

√
2B̃
)
+ c̃σ2(B̃ +B2).

Now consider f satisfying

d

dt
f = D − 1

c̃ϵ
f

with initial condition f(0) =
∫
Gdρ0(v). By the comparison theorem, one knows that

before T ,
∫
Gdρt(v) is dominated by f , i.e.

∫
Gdρt(v) ≤ f(t). And one has an explicit

expression for f :

f(t) = c̃ϵD + (

∫
Gdρ0(v)− c̃ϵD)e−(1/c̃ϵ)t.

When ϵ is small enough, i.e.,

ϵ <

∫
Gdρ0(v)

c̃D
, (70)
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one can deduce

f(t) = c̃ϵD +
(∫

Gdρ0(v)− c̃ϵD
)
e−(1/c̃ϵ)t ≤ c̃ϵD +

(∫
Gdρ0(v)− c̃ϵD

)
=

∫
Gdρ0(v).

Thus for t ∈ [0, T ], ∫
Gdρt(v) ≤

∫
Gdρ0(v).

This completes the proof. □

Appendix H. Details of the numerical experiments

H.1. Figures 1 and Figure 2. The objective function E(v) is the similar to (35)

min
v

−A exp

(
−a
√
b2

d
∥v − v̂∥22

)
− exp

(
1

d

d∑
i=1

cos(2πb(v − v̂)i)

)
+ e1 + A;

with b = 3, A = 20, a = 0.2. The circular constraint reads,

g1(v) = ∥v∥22 − 1;

and the parabolic constraint reads,

g2(v) = v21 − v2.
The first case is a circular constraint, and the unconstrained minimizer is the same as the
constrained minimizer.

v̂ = v∗ =
1√
2
(1,−1).

the second case is a circular constraint, and the unconstrained minimizer is different from
the constrained minimizer. Therefore,

v̂ = (1/2, 1/3), v∗ = (0.781475;
√
1− 0.7814752).

The third case is a parabolic constraint, and the unconstrained minimizer is different from
the constrained minimizer. Therefore,

v̂ = (1/2, 1/3), v∗ = (0.5428; 0.54282).

We use Algorithm 1 with

N = 50, α = 30, ϵ = 0.01, λ = 1, σ = 1, γ = 0.01, ϵstop = 0. (71)

We set ϵstop to be 0 to see the iteration evolves until it reaches 300 steps. All the particles
initially follow Unif[−3, 3]2. We consider the algorithm successful in finding the constrained
minimizer v∗ if the distance between the consensus point vα and v∗ satisfies ∥v∗ − vα∥∞ <
0.01. The distance is measured in terms of (34).
We use Algorithm 1 in [13] for the projected CBO method. For the penalized CBO

method, we set the penalty as 1
ϵ
G(v), and then apply the CBO algorithm to the following

unconstrained optimization problem,

E ϵ(v) = E(v) + 1

ϵ
G(v).
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We use the same parameters as (71) for the two alternative algorithms.
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