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Abstract

In this paper, we address the problem of continuous-time reinforcement
learning in scenarios where the dynamics follow a stochastic differential
equation. When the underlying dynamics remain unknown and we have
access only to discrete-time information, how can we effectively conduct
policy evaluation? We first highlight that the commonly used Bellman
equation is not always a reliable approximation to the true value function.
We then introduce PhiBE, a PDE-based Bellman equation that offers a
more accurate approximation to the true value function, especially in sce-
narios where the underlying dynamics change slowly. Moreover, we extend
PhiBE to higher orders, providing increasingly accurate approximations.
Additionally, we present a model-free algorithm to solve PhiBE when
only discrete-time trajectory data is available. Numerical experiments are
provided to validate the theoretical guarantees we propose.

1 Introduction

Reinforcement learning (RL) [20] has achieved significant success in applica-
tions inherently viewed as Markov decision processes. Remarkable milestones
include its applications in Atari Games [13], AlphaGO [18], and ChatGPT
[24, 15], demonstrating capabilities similar to human intelligence. In all these
applications, there is no concept of time, where state transitions occur only
after actions are taken. However, in most applications in the physical world,
such as autonomous driving [3, 12] and robotics [10], state changes continu-
ously over time regardless of whether actions are discrete or not. In contrast
to discrete-time decision-making applications, RL encounters challenges when
applied to continuous-time decision-making processes. This paper directs its
focus toward addressing continuous-time reinforcement learning problems that
can be equivalently viewed as a stochastic optimal control problem with unknown
dynamics [23, 6]. Since one can divide the RL problem into policy evaluation
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and policy update [21, 11, 22, 8], we first focus on the continuous-time policy
evaluation (PE) problem in this paper.

Given discrete-time trajectory data generated from the underlying dynam-
ics, a common approach to address the continuous-time PE problem involves
discretizing time and treating it as a Markov decision process. This method
yields an approximated value function satisfying a Bellman equation, thereby one
can use RL algorithms such as Temporal difference[20], gradient TD[17], Least
square TD [4] to solve the Bellman equation. However, this paper shows that
the Bellman equation is not always a good tool for solving the continuous-time
value function. We show that the solution to the Bellman equation is sensitive
to time discretization, the change rate of the rewards and the discount coefficient
as shown in Figure 1 (See Section 5.1 for the details of Figure 1.) Hence, the
ineffectiveness of RL algorithms for continuous-time RL doesn’t stem from data
stochasticity or insufficient sampling points; rather, it fundamentally arises from
the failure of the Bellman equation as an approximation of the true value function.
As shown in Figure 1, the RL algorithms are approximating the solution to the
Bellman equation instead of the true value function.

The central question we aim to address in this paper is whether, with the
same discrete-time information, one can approximate the true solution more
accurately than the Bellman equation.

We proposed a PDE-based Bellman equation, called PhiBE. which integrates
discrete-time information with a continuous PDE. This approach yields a more
accurate approximation of the exact solution compared to the traditional Bellman
equation, particularly when the acceleration of the dynamics is small. When
equipped with discrete-time transition distribution, PhiBE is a second-order
PDE that contains discrete-time information. The core concept revolves around
utilizing discrete-time data to approximate the dynamics rather than the value
function. Furthermore, we extend this framework to higher-order PhiBE, which
enhances the approximation of the true value solution with respect to the time
discretization. As illustrated in Figure 1, when provided with the same discrete-
time information, the exact solution derived from PhiBE is closer to the true
value function than BE. Additionally, we introduce a model-free algorithm for
approximating the solution to PhiBE when only discrete-time data is accessible.
As depicted in Figure 1, with exactly the same data, the proposed algorithm
outperforms the RL algorithms.

Contributions

• We demonstrate that the Bellman equation is a first-order approximation
in terms of time discretization and provide the error dependence on the
discount coefficient, reward function, and dynamics.

• We propose a PDE-based Bellman equation that combines discrete-time
information with PDE formulation. Furthermore, we extend it to a higher-
order approximation. Error analysis is conducted for both deterministic
and stochastic case, and the error dependence on the discount coefficient,
reward function, and dynamics are explicitly derived.
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(a) ∆t = 5, β = 0.1, V (s) =
cos3(s).
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(c) ∆t = 0.1, β =
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Figure 1: Here the data are collected every ∆t unite of time, β is the discount
coefficient, and V (s) is the true value function. Here, a larger discount coefficient
indicates that future rewards are discounted more. LSTD [4] is a popular RL
algorithm for linear function approximation. The PhiBE is proposed in Section
3 and the algorithm is proposed in Section 4.

• We propose a model-free algorithm for solving PhiBE when only discrete-
time data is available.

Related Work There are primarily two approaches to address continuous-time
RL from the stochastic optimal control perspective. One involves employing
machine learning techniques to learn the dynamics from discrete-time data
and subsequently transforming the problem into a classical optimal control
problem with known dynamics [9, 5]. However, directly identifying the continuous
dynamics is often challenging. Another approach involves an algorithm that
converges to the true value function using continuous-time information and
then discretizes it when only discrete-time data is available. For instance, [1]
presents a policy gradient algorithm tailored for linear dynamics and quadratic
rewards. [7] introduces a martingale loss function for continuous-time PE.
These algorithms converge to the true value function when continuous-time data
is available. However, when only discrete-time data is accessible, numerical
summation in discrete-time is employed to approximate the continuous integral
(see, for example, Algorithm 2 in [1] and Equation (19) in [7]), which is similar
to the Bellman equation.

The proposed method differs fundamentally in two ways: First, unlike model-
based RL approaches, which end up solving a PDE with only continuous-time
information, we integrate discrete-time information into the PDE formulation.
Second, unlike alternative methodologies that directly approximate the value
function using discrete-time values, which could neglect the smoothness of the
function, our method results in a PDE that incorporates gradients of the value
function, which ensures that the solution closely approximates the true value
function under smooth dynamics.
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Organization The setting of the problem is specified in Section 2. Section 3
introduces the PDE-based bellman equation, PhiBE, and establishes theoretical
guarantees. In Section 4, a model-free algorithm for solving the PhiBE is
proposed. Numerical experiments are conducted in Section 5.

2 Setting

Consider the following continuous-time PE problem, where the value function
V (s) ∈ R is defined as

V (s) = E
[∫ ∞

0

e−βtr(st)dt|s0 = s

]
, (1)

and the state st ∈ S = Rd is driven by the stochastic differential equation (SDE),

dst = µ(st)dt+ σ(st)dBt. (2)

Here µ(s) ∈ Rd, σ(s) ∈ Rd×d are unknown functions. In this paper, we assume
that µ(s), σ(s) are Lipschitz continuous and reward function ∥r∥L∞ is bounded.
This ensures that (2) has a unique strong solution [14] and the infinite horizon
integral is bounded.

We aim to determine the continuous-time value function V (s) when only
discrete-time information is available. To be more specific, we consider the
following two cases:

case 1. The transition distribution ρ(s′,∆t|s) in discrete time ∆t, driven by the
continuous dynamics (2), is given. Here ρ(s′,∆t|s) represents the proba-
bility density function of s∆t given s0 = s.

case 2. Trajectory data s generated by the continuous dynamics (2) and collected
at discrete time j∆t is given. Here s = {sl0, sl∆t, · · · , slm∆t}Il=1 contains
I independent trajectories, and the initial data si0 of each trajectory are
sampled from a distribution ρ0(s).

When the discrete transition distribution is given (Case 1), one can explicitly
formulate the Bellman equation. One can also estimate the discrete transition
distribution from the trajectory data, which is known as model-based RL. The
error analyses in Section 3 are conducted under Case 1. We demonstrate that
the Bellman equation is not the optimal equation to solve continuous-time
reinforcement learning problems under certain circumstances, and consequently,
all the RL algorithms derived from it are not optimal either. To address this,
we introduce a Physics-informed Bellman equation (PhiBE) and establish that
its exact solution serves as a superior approximation to the true value function
compared to the traditional Bellman equation. When only trajectory data is
available (Case 2), one can also use the data to estimate the value function
directly, referred to as model-free RL, which will be discussed in Section 4.
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3 A PDE-based Bellman Equation (PhiBE)

In this section, we first introduce the Bellman equation in Section 3.1, followed
by an error analysis to demonstrate why it is not always a good approximation.
Then, in Section 3.2, we propose the PhiBE, a PDE-based Bellman equation,
considering both deterministic case (Section 3.2.1) and stochastic case (Sec-
tion 3.2.2). The error analysis provides guidance on when PhiBE is a better
approximation than the BE.

3.1 Bellman equation

By approximating the definition of the value function (1) in discrete time,
one obtains the approximated value function,

Ṽ (s) = E

 ∞∑
j=0

e−β∆tjr(sj∆t)∆t|s0 = s

 .

In this way, it can be viewed as a policy evaluation problem in Markov Decision
Process, where the state is s ∈ S, the reward is r(s)∆t, and the discount factor
is e−β∆t and the transition dynamics is ρ(s′,∆t|s). Therefore, the approximated
value function Ṽ (s) satisfies the following Bellman equation. [20]

Definition 1 (Definition of BE).

Ṽ (s) = r(s)∆t+ e−β∆tEs∆t∼ρ(s′,∆t|s)[Ṽ (s∆t)|s0 = s]. (3)

When the discrete-time transition distribution is not given, one can utilize
various RL algorithms to solve the Bellman equation using the given trajectory
data. However, if the exact solution to the Bellman equation is not a good
approximation to the true value function, then all the RL algorithms derived
from it will not effectively approximate the true value function. In the theorem
below, we provide an upper bound for the distance between the solution Ṽ to
the Bellman equation and the true value function V .

Theorem 3.1. Assume that ∥r∥L∞ , ∥Lµ,Σr∥L∞ are bounded, then the solution

Ṽ (s) to the BE (3) approximates the true value function V (s) defined in (1)
with an error∥∥∥V (s)− Ṽ (s)

∥∥∥
L∞

≤
1
2 (∥Lµ,Σr∥L∞ + β ∥r∥L∞)

β
∆t+ o(∆t),

where
Lµ,Σ = µ(s) · ∇+Σ : ∇2, (4)

with Σ = σσ⊤, and Σ : ∇2 =
∑

i,j Σij∂si∂sj .

Remark 1 (Assumptions on ∥Lµ,Σr∥L∞). One sufficient condition for the
assumption to hold is that ∥µ(s)∥L∞ , ∥Σ(s)∥L∞ ,

∥∥∇kr(s)
∥∥
L∞ for k = 0, 1, 2 are
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all bounded. However, this condition is less restrictive than the above and allows,
for example, linear dynamics µ(s) = λs,Σ = 0, with the derivative of the reward
decreasing faster than a linear function at infinity, ∥s · ∇r(s)∥L∞ ≤ C.

The proof of the theorem is given in Section 6.1. In fact, by expressing the
true value function V (s) as the sum of two integrals, one can more clearly tell
where the error in the BE come from. Note that V (s), as defined in (1), can be
equivalently written as,

V (s) =E

[∫ ∆t

0

e−βtr(s)dt+

∫ ∞

∆t

e−βtr(st)dt|s0 = s

]

=E

[∫ ∆t

0

e−βtr(s)dt|s0 = s

]
+ e−β∆tE [V (st+∆t)|s0 = s]

(5)

One can interpret the Bellman equation defined in (3) as an equation resulting

from approximating E
[

1
∆t

∫∆t

0
e−βtr(st)dt|s0 = s

]
in (5) by r(s). The error

between these two terms can be bounded by:∣∣∣∣∣E
[

1

∆t

∫ ∆t

0

e−βtr(st)dt− r(s0)|s0 = s

]∣∣∣∣∣ ≤ 1

2

(
β ∥r∥L∞ + ∥Lµ,Σr∥L∞

)
∆t+o(∆t),

(6)

characterizes the error of the BE
∥∥∥V − Ṽ

∥∥∥
L∞

in Theorem 3.1.

Theorem 3.1 indicates that the solution Ṽ to the Bellman equation (3)
approximates the true value function with a first-order error of O(∆t). Moreover,
the coefficient before ∆t suggests that for the same time discretization ∆t, when
β is small, the error is dominated by the term ∥Lµ,Σr(s)∥L∞ , indicating that the
error increases when the reward changes rapidly. Conversely, when β is large,
the error is mainly affected by ∥r∥L∞ , implying that the error increases when
the upper bound of the reward is large.

The question that the rest of this sectionseeks to address is whether, given
the same discrete-time information, i.e., the transition distributuion ρ(s′,∆t|s),
time discretization ∆t, and discount coefficient β, we can achieve a more accurate
estimation of the value function V compared to the Bellman equation Ṽ .

3.2 A PDE-based Bellman equation

In this section, we introduce a PDE-based Bellman equation, referred to as
PhiBE. We begin by discussing the case of deterministic dynamics in Section
3.2.1 to illustrate the idea clearly. Subsequently, we extend our discussion to the
stochastic case in Section 3.2.2.
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3.2.1 Deterministic Dynamics

When σ(s) ≡ 0 in (2), the dynamics becomes deterministic, which can be
described by the following ODE,

dst
dt

= µ(st). (7)

If the discrete-time transition dynamics p(s′,∆t|s) = p∆t(s) is given, where
p∆t(s) provides the state at time t+∆t when the state at time t is s, then the
BE in deterministic dynamics reads as follows,

1

∆t
Ṽ (s) = r(s) +

e−β∆t

∆t
Ṽ (p∆t(s)).

The key idea of the new equation is that, instead of approximating the value
function directly, one approximates the dynamics. First note that the value
function defined in (1) can be equivalently written as,

V (st) =

∫ ∞

t

e−β(t̃−t)r(st̃)dt̃

which implies that,

d

dt
V (st) =β

∫ ∞

t

e−β(t̃−t)r(st̃)dt̃− r(st).

Using chain rule on the LHS of the above equation yields d
dtV (st) = µ(st)·∇V (st),

and the RHS can be written as βV (st)− r(st), resulting in a PDE for the true
value function

βV (st) = r(st) + µ(st) · ∇V (st).

or equivalently,
βV (st) = r(st) + µ(st) · ∇V (st). (8)

Then, applying a finite difference scheme, one can approximate µ(st) by

µ(st) =
d

dt
st ≈

1

∆t
(st+∆t − st),

and substituting it back into (8) yields

βV̂ (st) = r(st) +
1

∆t
(st+∆t − st) · ∇V̂ (st).

Alternatively, this equation can be expressed in the form of a PDE as follows,

βV̂ (s) = r(s) +
1

∆t
(p∆t(s)− s) · ∇V̂ (s), (9)

Note that the error now arises from∣∣∣∣µ(st)− st+∆t − st
∆t

∣∣∣∣ ≤ 1

2
∥µ · ∇µ∥L∞ ∆t,
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which only depends on the dynamics. As long as the dynamics change slowly,

and hence
∥∥∥d2

dt st

∥∥∥
L∞

= ∥µ · ∇µ∥L∞ is small, the error diminishes.

We refer to (9) as PhiBE, an abbreviation for the physics-informed Bellman
equation, because it incorporates both the current state and the state after ∆t,
similar to the Bellman equation, while also resembling the form of the PDE (8)
derived from the true continuous-time physical environment. However, unlike
the true PDE (8) and the Bellman equation, where one only possesses continuous
information and the other only discrete information, PhiBE combines both
continuous PDE form and discrete transition information p∆t(s).

One can derive a higher-order PhiBE by employing a higher-order finite
difference scheme to approximate µ(st). For instance, the second-

µ(st) ≈ µ̂2(st) :=
1

∆t

[
−1

2
(st+2∆t − st) + 2(st+∆t − st)

]
,

resulting in the second-order PhiBE,

βV̂2(s) = r(s) +
1

∆t

[
−1

2
(p∆t(p∆t(s))− s) + 2(p∆t(s)− s)

]
· ∇V̂2(s).

In this approximation, ∥µ(s)− µ̂2(s)∥L∞ has a second order error O(∆t2).
We summarize i-th order PhiBE in deterministic dynamics in the following

Definition.

Definition 2 (i-th order PhiBE in deterministic dynamics). When the underlying
dynamics are deterministic, then the i-th order PhiBE is defined as,

βV̂i(s) = r(s) + µ̂i(s) · ∇V̂i(s), (10)

where

µ̂i(s) =
1

∆t

i∑
j=1

aj

p∆t ◦ · · · ◦ p∆t︸ ︷︷ ︸
j

(s)− s

 , (11)

and

(a0, · · · , ai)⊤ = A−1b, with Akj = jk, bk =

{
0, k ̸= 1

1, k = 1
for 0 ≤ j, k ≤ i.

(12)

Remark 2. Note that µi(s) can be equivalently written as

µi(s) =
1

∆t

i∑
j=1

aj [sj∆t − s0|s0 = s].

There is an equivalent definition of (a0, · · · , ai), given by

i∑
j=0

ajj
k =

{
0, k ̸= 1,

1, k = 1,
for 0 ≤ j, k ≤ i. (13)
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Note that this method differs from the finite difference scheme. In the classical
finite difference scheme, the dynamics µ(s) is known, and the numerical scheme
is used to approximate the trajectory sj∆t. However, here it is the opposite.
While the dynamics µ(s) is unknown, the trajectory sj∆t is used to approximate
the dynamics. Consequently, the technique used to demonstrate the convergence
and convergence rate of V̂i(s) is also distinct from classical numerical analysis.
In Lemma 3.2, we establish that µ̂i(s) is an i-th order approximation to µ(s).
Then, in Theorem 3.3, we prove that V̂i(s) is an i-th order approximation to
V (s).

Lemma 3.2. Assume that
∥∥Li

µµ(s)
∥∥
L∞ is bounded, then the distance between

µ̂i(s) defined in (11) and the true dynamics can be bounded by

∥µ̂i(s)− µ(s)∥L∞ ≤ Ci

∥∥Li
µµ(s)

∥∥
L∞ ∆ti,

where

Ci =

∑i
j=0 |aj |ji+1

(i+ 1)!
, Lµ = µ(s) · ∇. (14)

Remark 3 (Assumptions on
∥∥Li

µµ(s)
∥∥
L∞). A sufficient condition for

∥∥Li
µµ(s)

∥∥
L∞

being bounded is that
∥∥∇kµ(s)

∥∥
L∞ are bounded for all 0 ≤ k ≤ i. Note that

the linear dynamics µ(s) = λs does not satisfy the condition. We lose some
sharpness for the upper bound to make the theorem work for all general dynamics.
However, we prove in Theorem 3.4 that PhiBE works when µ(s) = λs, and one
can derive a sharper error estimate for this case.

Theorem 3.3. Assume that ∥∇r(s)∥L∞ ,
∥∥Li

µµ(s)
∥∥
L∞ are bounded. Addition-

ally, assume that ∥∇µ∥L∞ < β, then the solution V̂i(s) to the PhiBE (10) is an
ith-order approximation to the true value function V (s) defined in (1) with an
error ∥∥∥V̂i(s)− V (s)

∥∥∥
L∞

≤ Ci

∥∇r∥L∞

∥∥Li
µµ(s)

∥∥
L∞

β − ∥∇µ∥L∞
∆ti,

where Ci is a constant defined in (14).

See Section 6.2 for the proof of Lemma 3.2 and Theorem 3.3.

Remark 4 (1st-order PhiBE v.s. BE). By Theorem (3.3), the distance between
the first order PhiBE solution and the true value function can be bounded by∥∥∥V̂1 − V

∥∥∥
L∞

≤
∥∇r∥L∞ ∥µ · ∇µ∥L∞

β − ∥∇µ∥L∞
.

Comparing it with the difference between the BE solution and the true value
function in deterministic dynamics,∥∥∥Ṽ − V

∥∥∥
L∞

≤
∥µ∇r∥L∞ + β ∥r∥L∞

2β
,
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one observes that when the change of the reward ∥∇r∥L∞ is rapid but the change

in velocity is slow, i.e.,
∥∥∥ d2

dt2 st

∥∥∥
L∞

= ∥µ · ∇µ∥L∞ is small, even though both V̂1

and Ṽ are first-order approximations to the true value function, V̂1 has a smaller
upper bound.

Remark 5 (Higher-order PhiBE). The advantage of the higher-order PhiBE is
two-fold. Firstly, it provides a higher-order approximation, enhancing accuracy
compared to the first-order PhiBE or BE. Secondly, as demonstrated in Theorem
3.3, the approximation error of the i-th order PhiBE decreases as

∥∥Li
µµ
∥∥
L∞

decreases. if the ”acceleration”, i.e., d2

dt2 st = Lµµ, of the dynamics is large but

the change in acceleration, i.e., d3

dt3 st = L2
µµ, is slow, then the error reduction

with the second-order PhiBE will be even more pronounced in addition to the
higher-order error effect.

Additionally, when the underlying dynamics is linear, one can conduct a
sharper error analysis for PhiBE.

Theorem 3.4. When the underlying dynamics follows

d

dt
st = λst,

then the solution to the i-th order PhiBE in deterministic dynamics approximates
the true value function with an error∥∥∥V̂i − V

∥∥∥
L∞

≤ Ci
λi+1 ∥s · ∇r(s)∥L∞

β2
∆ti + o(∆ti)

where Ci is defined in (14).

The proof of the above theorem is provided in Section 6.3. We also establish
the upper bound for the BE in the same dynamics, and it turns out that the
upper bound in Theorem 3.1 is already sharp. According to Theorem 3.4, the
error of the i-th order PhiBE for linear dynamics on λi+1. Consequently, when
β is small or the upper bound of the reward function is large, a small λ will
make the first-order PhiBE a superior approximation to the Bellman equation.

3.2.2 Stochastic dynamics

When σ(s) ̸≡ 0 is a non-degenerate matrix, then the dynamics is stochastic
and driven by the SDE in (2). By Feynman–Kac theorem [19], the value function
V (s) satisfies the following PDE,

βV (s) = r(s) + Lµ,ΣV (s), (15)

where Lµ,Σ is an operator defined in (4). However, one cannot directly solve
the PDE (15) as µ(s), σ(s) are unknown. In the case where one only has access
to the discrete-time transition distribution ρ(s′,∆t|s), we propose an i-th order
PhiBE in the stochastic dynamics to approximation the true value function V (s).
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Definition 3 (i-th order PhiBE in stochastic dynamics). When the underlying
dynamics are stochastic, then the i-th order PhiBE is defined as,

βV̂i(s) = r(s) + Lµ̂i,Σ̂i
V̂i(s), (16)

where

µ̂i(s) =
1

∆t
Esj∆t∼ρ(·,j∆t|s)

 i∑
j=1

aj(sj∆t − s0)|s0 = s


Σ̂i(s) =

1

∆t
Esj∆t∼ρ(·,j∆t|s)

 i∑
j=1

aj(sj∆t − s0)(sj∆t − s0)
⊤|s0 = s

 (17)

where Lµ̂i,Σ̂i
is defined in (4), and a = (a0, · · · , ai)⊤ is defined in (12).

Here we present the first and second order approximations. The first-order
approximation is as follows:

µ̂1(s) =
1

∆t
E [(s∆t − s0)|s0 = s] , Σ̂1(s) =

1

∆t
E
[
(s∆t − s0)(s∆t − s0)

⊤|s0 = s
]
;

and the second-order approximation reads,

µ̂2(s) =
1

∆t
E
[
2(s∆t − s0)−

1

2
(s2∆t − s0)|s0 = s

]
,

Σ̂2(s) =
1

∆t
E
[
2(s∆t − s0)(s∆t − s0)

⊤ − 1

2
(s2∆t − s0)(s2∆t − s0)

⊤|s0 = s

]
.

Next, we show the solution V̂i(s) to the higher order Bellman equation
provides a higher-order approximation to the true value function V (s). To
establish i-th order approximation, the following assumptions are required.

Assumption 1. Assumptions on the dynamics

(a) λmin(Σ(s)) > λmin > 0 for ∀s ∈ S.

(b) maxk,l
∑

i ∥∂siΣkl∥L∞ ≤ 2λmin

(c)
∥∥∇kµ(s)

∥∥
L∞ ,

∥∥∇kΣ(s)
∥∥
L∞ are bounded for 0 ≤ k ≤ 2i

The first assumption ensures the coercivity of the operator Lµ,Σ, which
is necessary to establish the regularity of V (s). imposes a restriction on the
change in diffusion, ensuring it remains smaller than the coercivity, which is
used in proving the regularity of ∇V (s). The last assumption is employed to
demonstrate that µ̂i and Σ̂i are i-th approximations to µ,Σ, respectively.

Assume that there exists a unique stationary distribution ρ(s) to the stochastic
dynamics that satisfies,∫

Lµ,Σϕ(s)ρ(s)ds = 0. for ∀ϕ(s) ∈ C∞
c , (18)

11



then, we define a weighted L2 norm

⟨f, g⟩ρ =

∫
f(s)g(s)ρ(s)ds, ∥f∥2ρ =

∫
f2(s)ρ(s)ds.

Theorem 3.5. Assume that ∥r∥ρ , ∥Lµ,Σr∥ρ are bounded, then the solution Ṽ (s)

to the BE (3) approximates the true value function V (s) defined in (1) with an
error ∥∥∥V (s)− Ṽ (s)

∥∥∥
ρ
≤

1√
3
(∥Lµ,Σr∥ρ + β ∥r∥ρ)

β
∆t+ o(∆t).

The proof is given in Section 6.4.

Theorem 3.6. Under Assumption 1, and ∆ti ≤ λmin

4Dµ,Σ
, the solution V̂i(s) to the

i-th order PhiBE (16) is an i-th order approximation to the true value function
V (s) that satisfying (15) with an error∥∥∥V (s)− V̂i(s)

∥∥∥
ρ
≤

√
βCr,µ,Σ,λmin + Cr,µ,Σ

β2
∆ti,

where Cr,µ,Σ,λmin
, Cr,µ,Σ are constants defined in (51) depending on µ(s),Σ(s), r(s), λmin,

and Dµ,Σ is a constant defined in (49) depending on µ,Σ .

Remark 6 (1st-order PhiBE v.s. BE). By the above Theorem, the distance
between the first-order PhiBE in the stochastic dynamics can be bounded by∥∥∥V̂1 − V

∥∥∥
ρ

≲
∆t

β

1√
βλmin

[
LΣ,ρ ∥r∥L∞ + LΣ ∥µ+∇ · Σ∥ρ ∥r∥L∞ + LΣCr,∇µ,∇Σ

)
+

∆t

β

(
1

β
LµCr,∇µ,∇Σ

)
where

LΣ,ρ ≤
√

C∇µ,∇Σ

λmin

(
∥LΣ∥ρ +

∥∥µµ⊤∥∥
ρ

)
+ ∥∇LΣ∥ρ +

∥∥∇(µµ⊤)
∥∥
ρ
,

LΣ ≲ ∥LΣ∥L∞ +
∥∥µµ⊤∥∥

L∞ ,

Lµ ≲ ∥Lµ∥L∞ ,

C∇µ,∇Σ ≲ ∥∇µ∥L∞ + ∥∇Σ∥L∞ ,

where L represents Lµ,Σ. This indicates that when λmin is large or ∇µ,∇Σ are

small, the difference between V̂1 and V is smaller. Comparing it with the upper
bound ∥Lr∥ρ + β ∥r∥ρ for the BE, it implies that when the noise is large or the
change in the dynamics is small, then the first order PhiBE solution is a better
approximation to the true value function. On the other hand, if the change
in the reward is small, then BE is a better approximation than the first-order
PhiBE.

The proof of Theorem 3.6 is given in Section 6.5. We provide the brief proof
sketch here.
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Proof sketch. Let e = V − V̂i. By energy estimate of (15) and (16), one has

β ∥e∥2ρ = ⟨Lµ,Σe, e⟩ρ +
〈
(Lµ̂i,Σ̂i

− Lµ,Σ)V̂i, e
〉
ρ
.

By the coercivity of the operator Lµ,Σ in Lemma 6.1, one can bound

⟨Lµ,Σe, e⟩ρ ≤ −λmin

2
∥e∥ρ . (19)

In order to bound the second term
〈
(Lµ̂i,Σ̂i

− Lµ,Σ)V̂i, e
〉
ρ
, one requires the dis-

tance ∥µ− µ̂i∥ ,
∥∥∥Σ− Σ̂i

∥∥∥ ,∥∥∥∇(Σ− Σ̂i)
∥∥∥ ≤ O(∆ti), which is provided by Lemma

6.4, and the boundedness of ∥V ∥ , ∥∇V ∥ provided by Lemma 6.2 and Lemma
6.3, respectively. Based on the above Lemmas, one can bound〈

(Lµ̂i,Σ̂i
− Lµ,Σ)V̂i, e

〉
ρ
≲ ∆ti ∥∇e∥ρ . (20)

Combining the two upper bounds (19), (20) yields the bound for ∥e∥ρ .

4 Model-free Algorithm for continuous-time Pol-
icy Eveluation

In the section, we assume that one only has access to the discrete-time
trajectory data {sl0, sl∆t, · · · slm∆t}Il=1. We first revisit the Galerkin method for
solving PDEs with known dynamics in Section 4.1. Subsequently, we introduce
a model-free Galerkin method in Section 4.2.

4.1 Galerkin Method

Given n orthogonal bases {ϕi(s)}ni=1 with respect to the measure dρ(s), the
objective is to find an approximation V̄ = Φ(s)⊤θ of the solution V to the PDE,

βV (s)− Lµ,ΣV (s) = r(s)

where θ ∈ Rn,Φ(s) = (ϕ1(s), · · · , ϕn(s))
⊤, and Lµ,Σ is defined in (4). The

Galerkin method involves inserting the ansatz V̄ into the PDE and then projecting
it onto the finite bases,〈

βV̄ (s)− Lµ,ΣV̄ (s),Φ(s)
〉
ρ
= ⟨r(s),Φ(s)⟩ρ

which results in a linear system of θ,

Aθ = b, A = ⟨βΦ(s)− Lµ,ΣΦ(s),Φ(s)⟩ρ , b = ⟨r(s),Φ(s)⟩ρ

When the dynamics µ(s),Σ(s) are known, one can explicitly compute the matrix
A and the vector b explicitly, and find the parameter θ = A−1b accordingly.

13



4.2 Model-free Galerkin method for PhiBE

In continuous-time policy evaluation problem, one does not have access to
the underlying dynamics µ,Σ, however, the approximated dyanmcs µ̂i, Σ̂i is
given through PhiBE. Therefore, if one has access to the discrete-time transition
distribution, then the parameter θ = Â−1

i b can be solved for by approximating

A by Âi

Âi =
〈
βΦ− Lµ̂i,Σ̂i

Φ,Φ
〉
ρ

Now, when only discrete-time trajectory data is available, we first develop an
unbiased estimate barµi, Σ̄i for µ̂i, Σ̂i from the trajectory data,

µ̄i(s
l
j∆t) =

1

∆t

i∑
k=1

ak(s
l
(k+j)∆t − slj∆t),

Σ̄i(s
l
j∆t) =

1

∆t

i∑
k=1

ak(s
l
(k+j)∆t − slj∆t)(s

l
(k+j)∆t − slj∆t)

⊤.

(21)

Then, using the above unbiased estimate, one can approximate the matrix Â
and the vector b by

Āi =

I∑
l=1

m−i∑
j=0

Φ(slj∆t)
[
βΦ(slj∆t)− Lµ̄i(slj∆t),Σ̄i(slj∆t)

Φ(slj∆t)
]⊤

,

b̄i =

I∑
l=1

m−i∑
j=0

r(slj∆t)Φ(s
l
j∆t).

By solving the linear system Āiθ = b̄i, one obtains the approximated value
function V̄ (s) = Φ(s)⊤θ in terms of the finite bases. Note that our algorithm can
also be applied to stochastic reward or even unknown reward. We summarize
the model-free Galerkin method in Algorithm 1.

5 Numerical experiments

5.1 Deterministic dynamics

We first consider deterministic dynamics, where the state space S is defined
as S = [−π, π], and discount coefficient β = 0.1. We consider two kinds of
underlying dynamics, one is linear,

d

dt
st = λst, (22)

and the other is nonlinear,

d

dt
st = λ sin2(st). (23)
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Algorithm 1 Model-free Galerkin method for i-th order PhiBE

Given: discrete time step ∆t, discount coefficient β, discrete-time trajectory
data {(slj∆t

, rlj∆t
)mj=0}Il=1 generated from the underlying dynamics, and a finite

bases {ϕi(s)}ni=1

1: Calculate Āi:

Āi =

I∑
l=1

m−i∑
j=0

Φ(slj∆t)

[
βΦ(slj∆t)− µ̄i(s

l
j∆t) · ∇Φ(slj∆t)−

1

2
Σ̄i(s

l
j∆t) : ∇2Φ(slj∆t)

]⊤
where µ̄i(s

l
j∆t), Σ̄i(s

l
j∆t) are defined in (21).

2: Calculate b̄i:

b̄i =
I∑

l=1

m−i∑
j=0

rlj∆tΦ(s
l
j∆t).

3: Calculate θ:
θ = Ā−1

i b̄i.

4: Output V̄ (s) =
∑n

i=1 θϕi(s).

The reward is set to be r(s) = β cos(ks)3−λs(−3k cos(ks)2 sin(ks)) for the linear
case and r(s) = β cos(ks)3 − λ sin2(s)(−3k cos(ks)2 sin(ks)) for the nonlinear
case, where the value function can be exactly obtained, V (s) = cos3(ks) in both
cases. We use periodic bases {ϕn(s1)}2M+1

k=1 = 1√
π
{ 1√

2
, cos(ms1), sin(ms1)}Mm=1

with M large enough so that the solution can be accurately represented by these
finite bases.

For the linear dynamics, the discrete-time transition dynamics are

p∆t(s) = eλ∆ts.

Hence, one can express the BE as

Ṽ (s) = r(s)∆t+ e−β∆tṼ (eλ∆ts), (24)

and i-th order PhiBE as

βV̂i(s) = r(s) +
1

∆t

[
i∑

k=1

ak(e
λk∆ts− s)

]
∇V̂i(s), (25)

respectively for ai defined in (12). For the nonlinear dynamics, we approximate
p∆t(s) and generate the trajectory data numerically,

st+δ = st + δλ sin2(st)

with δ = 10−4 sufficiently small.
The data we use are generated from J different initial value s0 ∼Unif[−π, π],

and each trajectory has m = 4 data, {s0, · · · , s(m−1)∆t}. Algorithm 1 is used
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to solve for the PhiBE, and LSTD is used to solve for BE. LSTD is similar to
Algorithm 1 except that one uses Ã defined as follows

Ã =

I∑
l=1

m−1∑
j=0

Φ(slj∆t)

[
βΦ(slj∆t)− µ̄i(s

l
j∆t) · ∇Φ(slj∆t)−

1

2
Σ̄i(s

l
j∆t) : ∇2Φ(slj∆t)

]⊤
(26)

instead of Āi.
In Figure 1, we compare the solution to the second-order PhiBE with the

solution to BE, and the performance of LSTD with the proposed Algorithm 1 for
linear dynamics (22) with λ = 0.05 and different ∆t, β, k. Note that the exact

solution to BE is computed as Ṽ (s) =
∑I

i=0 r(e
λ∆tis) with I large enough, and

the exact solution to PhiBE is calculated by applying the Galerkin method to
(25).

In Figure 2, we compare the solution to the first-order and second-order
PhiBE with the solution to the BE, and the performance of LSTD with the
proposed Algorithm 1 for nonlinear dynamics (23) for different ∆t, β, k, λ.

In Figure 3, the distances of the PhiBE solution and the BE solution to the
true value function are plotted as ∆t → 0. the distances of the approximated
solution by Algorithm 1 and LSTD to the true value function as the amount of
data increases are plotted. Here, the distance is measured using the L2 norm

D(V, V̂ ) =

√∫
(V (s)− V̂ (s))2ds. (27)

In Figures 1 and 2, the solution to PhiBE is much closer to the true value
function compared to the solution to BE in all the experiments. Especially,
the second-order PhiBE solution is almost identical to the exact value function.
Additionally, with access to only 40 or 400 data points, one can approximate the
solutions to PhiBE very well. Particularly, when ∆t = 5 is large, the solution
to PhiBE still approximates the true solution very well, which indicates that
one can collect data sparsely based on PhiBE. Moreover, the solution to PhiBE
is not sensitive to the oscillation of the reward function. Besides, unlike BE,
the error increases when β is too small or too large, twhile the error for PhiBE
decays as β increases. Furthermore, it’s noteworthy that in Figure 2/(b) and
(c), for relatively large changes in the dynamics indicated by ∥∇µ∥ ≤ λ = 5 and
2, respectively, PhiBE still provides a good approximation.

In Figure 3/(a) and (b), one can observe that the solution for BE approxi-
mates the true solution in first order, while the solution for i-th order PhiBE
approximates the true solution in i-th order. In Figure 3/(c) and (d), one can
see that as the amount of data increases, the performance of the algorithm does
not improve, and the error in the BE solution stops decreasing when it reaches

10−1. This is because the error
∥∥∥Ṽ − V

∥∥∥ = O(∆t) dominates the data error. On

the other hand, for higher-order PhiBE, as the amount of data increases, the
performance of the algorithm improves, and the error can achieve O(∆ti).
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Figure 2: The solution to PhiBE and BE, when the discrete-time transition
dynamics are given, are plotted in solid lines. The approximated solution to
PhiBE based on Algorithm 1 and to BE based on LSTD, when discrete-time
data is given, are plotted in dash lines. Both algorithms utilize the same data
points.
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Figure 3: The L2 error (27) of the solutions to PhiBE and BE with decreasing
∆t are plotted in the left two figures. The L2 error (27) of the approximated
solutions to PhiBE and BE with an increasing amount of data collected every
∆t = 5 unit of time are plotted in the right two figures. LSTD is used to
approximate the solution to BE, while Algorithm 1 is used to approximate the
solution to PhiBE. We set λ = 0.05, β = 0.1, k = 1 in both linear and nonlinear
cases.
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5.2 Stochastic dynamics

We consider the Ornstein–Uhlenbeck process,

ds(t) = λsdt+ σdBt,

with λ = 0.05, σ = 1. Here the reward is set to be r(s) = β cos3(ks) −
λs(−3k cos2(ks) sin(ks)) − 1

2σ
2(6k2 cos(s) sin2(ks)−3k2 cos2(ks) cos(ks)), where

the value function can be exactly obtained, V (s) = cos3(ks). For OU process,
since the conditional density function for st given s0 = s follows the normal

distribution with expectation seλt, variance σ2

2λ (e
2λt − 1). Both PhiBE and BE

have explicit forms. One can express PhiBE as,

βV̂ (s) =r(s) +
1

∆t

i∑
k=1

ak(e
λk∆t − 1)s∇V̂ (s)

+
1

2∆t

i∑
k=1

ak

[
σ2

2λ
(e2λk∆t − 1) + (eλk∆t − 1)2s2

]
∆V̂ (s);

(28)

and BE as,

Ṽ (s) =r(s)∆t+ e−β∆tE
[
Ṽ (st+1)|st = s

]
= r(s)∆t+ e−β∆t

∫
S
Ṽ (s′)ρ∆t(s

′, s)ds′
(29)

where

ρ∆t(s
′, s) =

1√
2πσ̂

exp

(
− 1

2σ̂2
(s′ − seλ∆t)2

)
, with σ̂ =

σ2

2λ
(e2λ∆t − 1).

In Figure 4 , we compare the exact solution and approximated solution to
PhiBE and BE, respectively, for different ∆t, β, k. In Figure 5/(a), the decay
of the error as ∆t → 0 for the exact solutions to PhiBE and BE is plotted. In
Figure 5 /(b), the decay of the approximated solution to PhiBE and BE based
on Algorithm 1 and LSTD are plotted with an increasing amount of data.

We observe similar performance in the stochastic dynamics as in the deter-
ministic dynamics, as shown in Figures 4 and 5. In Figure 5, the variance of the
higher order PhiBE is larger than that of the first-order PhiBE because it involves
more future steps. However, note that the error is plotted in a logarithmic scale.
Therefore, when the error is smaller, although the variance appears to have the
same width on the plot, it is actually much smaller. Particularly, when the
amount of the data exceeds 106, the variance is smaller than 10−1.
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Figure 4: The solution to PhiBE and BE, when the discrete-time transition
dynamics are given, are plotted in solid lines. The approximated solution to
PhiBE based on Algorithm 1 and to BE based on LSTD, when discrete-time
data is given, are plotted in dash lines. Both algorithms utilize the same data
points.
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Figure 5: The L2 error (27) of the solutions to PhiBE and BE with decreasing
∆t are plotted in (a). The L2 error (27) of the approximated solutions to PhiBE
and BE with an increasing amount of data collected every ∆t = 1 unit of time
are plotted in (b). LSTD is used to approximate the solution to BE, while
Algorithm 1 is used to approximate the solution to PhiBE. We set β = 0.1, k = 1
in both figures.
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6 Proofs

6.1 Proof of Theorem 3.1.

Proof. Let ρ(s′, t|s) be the probability density function of st that starts from
s0 = s, then it satisfies the following PDE

∂tρ(s
′, t|s) = ∇ · [µ(s′)ρ(s′, t|s)] + 1

2

∑
i,j

∂si∂sj [Σij(s
′)ρ(s′, t|s)]. (30)

with initial data ρ(s′, 0|s) = δs(s
′). Let f(t, s) = e−βtr(s), then

V (s)− Ṽ (s) = E

[ ∞∑
i=0

∫ ∆t(i+1)

∆ti

f(t, st)− f(∆ti, s∆ti)dt|s0 = s

]

=

∞∑
i=0

∫ ∆t(i+1)

∆ti

(∫
S
f(t, s′)ρ(s′, t|s)− f(∆ti, s′)ρ(∆ti, s′)ds′

)
dt

(31)

Since∫
S
f(t, s′)ρ(s′, t|s)− f(∆ti, s′)ρ(∆ti, s′)ds′

=

∫
S
f(t, s′)(ρ(s′, t|s)− ρ(s′,∆ti|s)) + (f(t, s′)− f(∆ti, s′))ρ(s′,∆ti|s)ds′

=

∫
S
f(t, s′)∂tρ(s

′, ξ1|s)(t−∆ti) + ∂tf(ξ2, s
′)(t−∆ti)ρ(s′,∆ti|s)ds′, where ξ1, ξ2 ∈ (∆ti,∆t(i+ 1))

=

∫
S
Lµ,Σf(t, s

′)ρ(s′, ξ1|s)(t−∆ti)ds′ −
∫
S
βe−βξ2r(s′)ρ(s′,∆ti|s)(t−∆ti)ds′

=

(
e−βt

∫
S
Lµ,Σr(s

′)ρ(s′, ξ1|s)ds′ − βe−βξ2

∫
S
r(s′)ρ(s′,∆ti|s)ds′

)
(t−∆ti)

(32)
where the second equality is due to mean value theorem, and the third equality
is obtained by inserting the equation (30) for ρ(s′, t|s) and integrating by parts.∣∣∣∣∫

S
f(t, s′)ρ(s′, t|s)− f(∆ti, s′)ρ(∆ti, s′)ds′

∣∣∣∣
≤∥Lµ,Σr∥L∞ e−β∆ti(t−∆ti) + βe−β∆ti ∥r∥L∞ (t−∆ti)
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Therefore, one has∥∥∥V (s)− Ṽ (s)
∥∥∥
L∞

≤
∞∑
i=0

∫ ∆t(i+1)

∆ti

∥Lµ,Σr∥L∞ e−β∆ti(t−∆ti) + βe−β∆ti ∥r∥L∞ (t−∆ti)dt

≤
(
∥Lµ,Σr∥L∞ + β ∥r∥L∞

) ∞∑
i=0

e−β∆ti

∫ ∆t(i+1)

∆ti

(t−∆ti)dt

≤1

2

(
∥Lµ,Σr∥L∞ + β ∥r∥L∞

) ∞∑
i=0

e−β∆ti∆t2 =
L

1− e−β∆t
∆t2 =

L

β
∆t+ L

(
1

1− e−β∆t
∆t2 − ∆t

β

)
.

where L = 1
2

(
∥Lµ,Σr∥L∞ + β ∥r∥L∞

)
. Since

lim
∆t→0

L

(
1

1− e−β∆t
∆t2 − ∆t

β

)
1

∆t
= 0,

one has, ∥∥∥V (s)− Ṽ (s)
∥∥∥
L∞

=
L∆t

β
+ o(∆t).

6.2 Proof of Theorem 3.3

Proof of Lemma 3.2

Proof. By taylor expansion, one has

sj∆t =

i∑
k=0

(j∆t)k

k!

(
dk

dtk
st

∣∣∣∣
t=0

)
+

(j∆t)i+1

(i+ 1)!

(
di+1

dti+1
st

∣∣∣∣
t=ξj

)

with ξj ∈ (0, j∆t). Inserting it into µ̂i(s) gives,

µ̂i(s) =
1

∆t

i∑
j=0

aj [sj∆t|s0 = s]

=
1

∆t

i∑
j=0

aj

[
i∑

k=0

(
dk

dtk
st

∣∣∣∣
t=0

)
(∆tj)k

k!
+

(
di+1

dti+1
st

∣∣∣∣
t=ξj

)
(∆tj)i+1

(i+ 1)!

]

=
1

∆t

i∑
k=0

(
dk

dtk
st

∣∣∣∣
t=0

)
(∆t)k

k!

i∑
j=0

ajj
k +

1

∆t

i∑
j=0

aj

(
di+1

dti+1
st

∣∣∣∣
t=ξj

)
(∆tj)i+1

(i+ 1)!

=

(
d

dt
st

∣∣∣∣
t=0

)
+

∆ti

(i+ 1)!

i∑
j=0

ajj
i+1

(
di+1

dti+1
st

∣∣∣∣
t=ξj

)
,
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where the last equality is due to the definition of a in (13). Since

d

dt
st

∣∣∣∣
t=0

= µ(s0) = µ(s),

one has

|µ̂i(s)− µ(s)| = ∆ti

(i+ 1)!

∣∣∣∣∣∣
i∑

j=0

ajj
i+1

(
di+1

dti+1
st

∣∣∣∣
t=ξj

)∣∣∣∣∣∣ .
Since

di+1

dti+1
st =

di

dti
(µ(st)) = Li

µµ(st)

Then as long as
∣∣∇kµ(s)

∣∣ ≤ Cµ for ∀0 ≤ k ≤ i are bounded, then
∥∥Li

µµ(st)
∥∥
L∞

is bounded. This implies that

∥µ̂i(s)− µ(s)∥L∞ ≤
∥∥Li

µµ(st)
∥∥
L∞

(i+ 1)!

i∑
j=0

|aj |ji+1∆ti.

Proof of Theorem 3.3

Proof. Since V̂i satisfies the PDE (10), by Feynman–Kac theorem, it is equiva-
lently to write it as,

V̂i =

∫ ∞

0

e−βtr(ŝt)dt

with
d

dt
ŝt = µ̂(st).

Hence,

∣∣∣V (s)− V̂ (s)
∣∣∣ = ∣∣∣∣∫ ∞

0

e−βt(r(st)− r(ŝt))dt

∣∣∣∣ =
∣∣∣∣∣
∫ ∞

0

e−βt

(∫ ŝt

st

∇r(s)ds

)
dt

∣∣∣∣∣
≤∥∇r∥L∞

∫ ∞

0

e−βt |ŝt − st| dt

(33)
where

d

dt
st = µ(st),

d

dt
ŝt = µ̂i(ŝt), s0 = ŝ0 = s (34)

Subtracting the two equations in (34) and multiplying it with ŝt − st gives

1

2

d

dt
|ŝt − st|2 =(µ̂i(ŝt))− µ(st))(ŝt − st)

= ((µ̂i(ŝt)− µ(ŝt) + (µ(ŝt)− µ(st))) (ŝt − st)

≤Cµ∆ti|ŝt − st|+ ∥∇µ(s)∥L∞ |ŝt − st|2,
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where Lemma 3.2 and mean value theorem is used in the last inequality with
Cµ from Lemma 3.2.This implies

d

dt
|ŝt − st| ≤ Cµ∆ti + ∥∇µ(s)∥L∞ |ŝt − st|

|ŝt − st| ≤ Cµ∆tit+

∫ t

0

∥∇µ(s)∥L∞ |ŝt − st|dt

|ŝ(t)− s(t)| ≤ (Cµ∆ti)te∥∇µ(s)∥L∞ t

Inserting the above inequality back to (33) gives∥∥∥V (s)− V̂ (s)
∥∥∥
L∞

≤∥∇r∥L∞ (Cµ∆ti)

∫ ∞

0

e−βtte∥∇µ(s)∥L∞ tdt =
Cµ ∥∇r∥L∞

(β − ∥∇µ(s)∥L∞)2
∆ti

6.3 Proof of Theorem 3.4

Proof.

V (s)− Ṽ (s) =

∞∑
i=0

∫ ∆t(i+1)

∆ti

e−βtr(eλts)− e−β∆tir(eλ∆tis)dt

=

∞∑
i=0

∫ ∆t(i+1)

∆ti

(
e−βt − e−β∆ti

)
r(eλts) +

∞∑
i=0

e−β∆ti

∫ ∆t(i+1)

∆ti

(
r(eλts)− r(eλ∆tis)

)
dt

≤∥r(s)∥L∞

(∫ ∞

0

e−βtdt−
∞∑
i=0

e−β∆ti∆t

)
+

∞∑
i=0

e−β∆ti

∫ ∆t(i+1)

∆ti

∫ t

∆ti

s · ∇r(eλt̃s)λeλt̃dt̃dt

where we use the integral residual of the Taylor expansion for the second term,

≤∥r(s)∥L∞

(
1

β
− ∆t

1− e−β∆t

)
+ ∥u · ∇r(u)∥L∞

∞∑
i=0

e−β∆ti

∣∣∣∣∣
∫ ∆t(i+1)

∆ti

∫ t

∆ti

λeλt̃e−λt̃dt̃dt

∣∣∣∣∣
where we set u = eλt̃s, s = e−λt̃u,

≤∥r(s)∥L∞

(
1

β
− ∆t

1− e−β∆t

)
+

1

2
|λ| ∥u · ∇r(u)∥L∞

∆t2

1− e−β∆t

Since

lim
∆t→0

1
β − ∆t

1−e−β∆t

∆t
2

= 1,
∆t

1−e−β∆t

1
β

= 1

which implies,∥∥∥V (s)− Ṽ (s)
∥∥∥
L∞

≤ 1

β

(
β

2
∥r(s)∥L∞ +

|λ|
2

∥u · ∇r(u)∥L∞

)
∆t.

On the other hand, the first-order PhiBE solution satisfies

βV̂1(s) = r(s) +
1

∆t
(eλ∆t − 1)s · ∇V̂1(s)
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By setting λ̂ = 1
∆t (e

λ∆t − 1), one can write V̂1(s) equivalently as

V̂1(s) =

∫ ∞

0

e−βtr(eλ̂ts)dt,

which yields, ∣∣∣V (s)− V̂1(s)
∣∣∣ = ∣∣∣∣∫ ∞

0

e−βt
(
r(eλts)− r(eλ̂ts)

)
dt

∣∣∣∣
=

∣∣∣∣∣
∫ ∞

0

e−βt

∫ λ

λ̂

s · ∇r(eλ̃ts)teλ̃tdλ̃dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ λ

λ̂

(∫ ∞

0

e−βte−λ̃tu · ∇r(u)teλ̃tdt

)
dλ̃

∣∣∣∣∣
≤∥u · ∇r(u)∥L∞

∣∣∣∣∣
∫ λ

λ̂

(∫ ∞

0

te−βtdt

)
dλ̃

∣∣∣∣∣
=

1

β2
∥u · ∇r(u)∥L∞ |λ− λ̂|,

where the second equality is obtained by applying the integral residual of taylor

expansion, and the third equality is obtained by setting u = eλ̃ts. Since

|λ− λ̂| = Ciλ
i+1∆t+ o(∆t)

Therefore, ∣∣∣V (s)− V̂1(s)
∣∣∣ ≤ Ciλ

i+1∆t

β2
∥u · ∇r(u)∥L∞ ∆t+ o(∆t).

6.4 Proof of Theorem 3.5

We first present the property of the operator Lµ,Σ and ∂siLµ,Σ in the following
Lemma.

Lemma 6.1. Under Assumption 1/(a), for the operator Lµ,Σ defined in (4),
one has

⟨Lµ,ΣV (s), V (s)⟩ρ ≤ −λmin

2
∥∇V ∥2ρ

Additionally, Assumption 1/(b) holds, one has,∑
i

⟨∂siLµ,ΣV (s), ∂siV (s)⟩ρ ≤ C∇µ,∇Σ ∥∇V ∥2ρ

where C∇µ,∇Σ is defined in (35) depending on the first derivatives of µ,Σ.
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Proof. Inserting the operator Lµ,Σ, and applying integral by parts gives,

⟨Lµ,ΣV (s), V (s)⟩ρ = ⟨µ · ∇V, V ⟩ρ −
1

2

∑
i,j

〈
∂sj (ΣijV ρ), ∂siV

〉
=
∑
i

〈
µiρ, ∂si

(
1

2
V 2

)〉
− 1

2

∑
i,j

〈
∂sj (Σijρ), ∂si

(
1

2
V 2

)〉
− 1

2

∑
i,j

〈
(∂sjV )Σij , ∂siV

〉
ρ

=−
∑
i

〈
∂si(µiρ),

1

2
V 2

〉
+

1

2

∑
i,j

〈
∂si∂sj (Σijρ),

1

2
V 2

〉
− 1

2

∫
(∇V )⊤Σ(∇V )ρ ds

=

〈
∇ ·
(
−µρ+

1

2
∇ · (Σρ)

)
,
1

2
V 2

〉
− 1

2

∫
(∇V )⊤Σ(∇V )ρ ds

≤− λmin

2
∥∇V ∥2ρ .

where the last inequality is because of the definition of the stationary solution
(18) and the positivity of the matrix Σ(s).

For the second part of the Lemma, first note that

∂siLµ,ΣV = ∂siµ · ∇V +
1

2
∂siΣ : ∇2V + Lµ,Σ∂siV.

Therefore, applying the first part of the Lemma gives∑
i

⟨∂siLµ,ΣV (s), V (s)⟩ρ

≤
∑
i

(
⟨∂siµ · ∇V, ∂siV ⟩ρ +

1

2

〈
∂siΣ : ∇2V, ∂siV

〉
ρ

)
− λmin

2

∑
i

∥∇∂siV ∥2ρ

≤
∑
i,k

∥∂siµk∥L∞ ∥∂skV ∥ρ ∥∂siV ∥ρ +
1

2

∑
i,k,l

∥∂siΣkl∥L∞ ∥∂sk∂slV ∥ρ ∥∂siV ∥ρ −
λmin

2

∑
k,i

∥∂sk∂siV ∥2ρ

≤1

2

[(
max

k

∑
i

∥∂siµk∥L∞

)∑
k

∥∂skV ∥2ρ +

(
max

i

∑
k

∥∂siµk∥L∞

)∑
i

∥∂siV ∥2ρ

+
1

2

(
max
k,l

∑
i

∥∂siΣkl∥L∞

)∑
k,l

∥∂sk∂slV ∥2ρ +
1

2

max
i

∑
k,l

∥∂siΣkl∥L∞

∑
i

∥∂siV ∥2ρ


− λmin

2

∑
k,i

∥∂sk∂siV ∥2ρ

≤C∇µ,∇Σ

2
∥∇V ∥2ρ ,

where Assumption 1/(b) is applied in the last inequality, and

C∇µ,∇Σ =max
k

∑
i

∥∂siµk∥L∞ +max
i

∑
k

∥∂siµk∥L∞ +
1

2
max

i

∑
k,l

∥∂siΣkl∥L∞ .

(35)
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Proof of Theorem 3.5 Now we are ready to prove Theorem 3.5.

Proof. By (31), one has∥∥∥V (s)− Ṽ (s)
∥∥∥
ρ

≤
∞∑
i=0

√
∆t

∫ ∆t(i+1)

∆ti

∥∥∥∥∫
S
f(t, s′)ρ(s′, t|s)− f(∆ti, s′)ρ(∆ti, s′)ds′

∥∥∥∥2
ρ

dt,
(36)

where the Jensen’s inequality is used. By (32), one has,∥∥∥∥∫
S
f(t, s′)ρ(s′, t|s)− f(∆ti, s′)ρ(∆ti, s′)ds′

∥∥∥∥
ρ

≤e−β∆ti(t−∆ti)
(
∥p1(ξ1, s)∥ρ + β ∥p2(∆ti, s)∥ρ

)
.

where

p1(s, t) =

∫
S
Lµ,Σr(s

′)ρ(s′, t|s)ds′, p2(s, t) =

∫
S
r(s′)ρ(s′, t|s)ds′.

Note that both p1(s, t) and p2(s, t) satisfies

∂tpi(s, t) = Lµ,Σpi(s, t)

with initial data
p1(0, s) = Lµ,Σr(s), p2(0, s) = r(s).

By Lemma (6.1), one has

1

2
∥pi(t)∥2ρ ≤ −λmin

2
∥∇pi(t)∥2ρ ≤ 0

which implies,
∥pi(t)∥ρ ≤ ∥pi(0)∥ρ

Therefore, one has∥∥∥∥∫
S
f(t, s′)ρ(s′, t|s)− f(∆ti, s′)ρ(∆ti, s′)ds′

∥∥∥∥
ρ

≤e−β∆ti(t−∆ti)
(
∥Lµ,Σr(s)∥ρ + β ∥r(s)∥ρ

)
.

Inserting it back to (36) yields,∥∥∥V (s)− Ṽ (s)
∥∥∥
ρ

≤
(
∥Lµ,Σr(s)∥ρ + β ∥r(s)∥ρ

) ∞∑
i=0

√
∆te−2β∆ti

∫ ∆t(i+1)

∆ti

(t−∆ti)2dt

=
(
∥Lµ,Σr(s)∥ρ + β ∥r(s)∥ρ

) 1√
3
∆t2

∞∑
i=0

e−β∆ti

=
1√
3β

(
∥Lµ,Σr(s)∥ρ + β ∥r(s)∥ρ

)
+ o(∆t)
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which completes the proof.

6.5 Proof of Theorem 3.6

Lemma 6.2 and Lemma 6.3 are both related to the true value function V
satisfying (15).

Lemma 6.2. For V (s) satisfying (15), one has

∥V ∥L∞ ≤ 1

β
∥r∥L∞

Proof. By the definition of V in (1), one has,

|V (s)| =
∣∣∣∣E [∫ ∞

0

e−βtr(st)|s0 = s

]∣∣∣∣ ≤ ∥r(s)∥L∞

∫ ∞

0

e−βtdt =
1

β
∥r(s)∥L∞

Lemma 6.3. Under Assumption 1/(a), (b), for V (s) satisfying (15), one has√
∥V (s)∥2ρ + ∥∇V (s)∥2ρ ≤ Cr,∇µ,∇Σ

β

where Cr,∇µ,∇Σ is a constant defined in (38) depending on λmin, r(s) and the
first derivatives of r(s), µ(s),Σ(s).

Proof. Based on Lemma 6.1, one has

β ∥V ∥2ρ − ⟨r(s), V (s)⟩ρ ≤ −λmin

2

∑
i

∥∂siV (s)∥2

β ∥∇V ∥2ρ − ⟨∇r(s),∇V (s)⟩ρ ≤ C∇µ,∇Σ ∥∇V ∥2ρ

Multiplying
C∇µ,∇Σ

λmin
to the first inequality and adding it to the second one gives

C∇µ,∇Σβ

λmin
∥V ∥2 + β ∥∇V (s)∥2ρ ≤ Cr,∇µ,∇Σ

√
∥V ∥ρ + ∥∇V ∥ρ (37)

where

Cr,∇µ,∇Σ =
√
2max

{
C∇µ,∇Σ

λmin
∥r∥ρ , ∥∇r∥ρ

}
(38)

Therefore, one has√
∥V ∥2 + ∥∇V (s)∥2 ≤ Cr,∇µ,∇Σ

βmin
{
1,

C∇µ,∇Σ

λmin

} .
As C∇µ,∇Σ is an upper bound and λmin is a lower bound, so one could always
assume that C∇µ,∇Σ ≥ 1 and λmin ≤ 1, which implies,√

∥V ∥2 + ∥∇V (s)∥2 ≤ Cr,∇µ,∇Σ

β
.
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Lemma 6.4 and Lemma 6.5 are related to the distance between the true
dynamics and the approximated dynamics µ− µ̂i, Σ− Σ̂ and the true operator
and the approximated operator Lµ,Σ − Lµ̂,Σ̂.

Lemma 6.4. Under Assumption 1, for µ̂(s), Σ̂(s) defined in (17), one has

∥µ̂i(s)− µ(s)∥L∞ ≤ Lµ∆ti,
∥∥∥Σ̂i(s)kl − Σ(s)kl

∥∥∥
L∞

≤ LΣ∆ti + o(∆ti),

and

max
k

√∑
l

∥∥∥∂sl(Σ̂i − Σ)kl

∥∥∥2
ρ
≤ LΣ,ρ∆ti, (39)

where Lµ, LΣ, LΣ,ρ are constants depending on µ,Σ, i defined in (41), (44), (48),
respectively.

Proof. Therefore, µ̂i can be written as

µ̂i(s) =
1

∆t

i∑
j=1

aj

(∫
s′ρ(s′, j∆t|s)ds′ − s

)
, (40)

where ρ(s′, t|s) is defined in (30). By Taylor’s expansion, one has

ρ(s′, j∆t|s) =
i∑

k=0

∂k
t ρ(s

′, 0|s) (j∆t)k

k!
+

1

i!

∫ j∆t

0

∂i+1
t ρ(s′, t|s)tidt.

Inserting the above equation into (40) yields,

µ̂i(s) =
1

∆t

i∑
k=0

 i∑
j=1

ajj
k

 (∆t)k

k!

∫
S
s′∂k

t ρ(s
′, 0|s)ds′ − 1

∆t

i∑
j=1

ajs︸ ︷︷ ︸
I

+
1

∆ti!

i∑
j=1

aj

(∫
S

∫ j∆t

0

s′∂i+1
t ρ(s′, t|s)tidtds′

)
︸ ︷︷ ︸

II

The first part can be written as

I =
1

∆t

 i∑
j=1

aj

∫
S
sρ(s′, 0|s)ds′ +

∫
S
s′∂tρ(s

′, 0|s)ds′ − 1

∆t

 i∑
j=1

aj

 s

=

∫
S
s′
(
∇ · [µ(s′)ρ(s′, 0)|s] + 1

2
∂si∂sj [Σij(s

′)ρ(s′, 0|s)]
)
ds′

=

∫
S
Lµ,Σ(s

′)ρ(s′, 0|s)ds′
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Therefore

I =

∫
S
µ(s)ρ(s′, 0|s)ds′ = µ(s).

which implies that

∥µ̂i(s)− µ(s)∥L∞ = II

=
1

∆ti!

i∑
j=1

aj

∫ j∆t

0

(∫
S
Li+1
µ,Σ(s

′)ρ(s′, t|s)ds′
)
tidt

=
1

∆ti!

i∑
j=1

aj

∫ j∆t

0

(∫
S
Li
µ,Σ(µ(s))ρ(s

′, t|s)ds′
)
tidt

≤
∥∥Li

µ,Σµ(s)
∥∥
L∞

∆ti!

i∑
j=1

|aj |
∫ j∆t

0

tidt

≤Lµ∆ti.

where

Lµ =

∑i
j=1 |aj |ji+1

(i+ 1)!

∥∥Li
µ,Σµ(s)

∥∥
L∞ . (41)

To prove the second inequality in the lemma, first note that

(
Σ̂i(s)

)
kl

=
1

∆t
E

 i∑
j=1

aj(sj∆t − s0)k(sj∆t − s0)l|s0 = s


=

1

∆t

∫
S

i∑
j=1

(s′ − s)k(s
′ − s)lρ(s

′, j∆t|s)ds′

=
1

∆t

i∑
j=1

aj

∫
S
(s′ − s)k(s

′ − s)lρ(s
′, 0|s)ds′ +

∫
S
(s′ − s)k(s

′ − s)l∂tρ(s
′, 0|s)ds′

+
1

∆ti!

i∑
j=1

aj

∫ j∆t

0

(∫
S
(s′ − s)k(s

′ − s)l∂
i+1
t ρ(s′, t|s)ds′

)
tidt

=Σkl(s) +
1

∆ti!

i∑
j=1

aj

∫ j∆t

0

(∫
S
Li
µ,Σ

(
µ(s′)k(s

′ − s)l + µ(s′)l(s
′ − s)k +

1

2
Σ(s′)kl

)
ρ(s′, t|s)ds′

)
tidt

(42)
Note that

Li
µ,Σ

(
µ(s′)k(s

′ − s)l + µ(s′)l(s
′ − s)k +

1

2
Σ(s′)kl

)
=h(s′)kl + f(s′)k(s

′ − s)l + f(s′)l(s
′ − s)k
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where

h(s′)kl =
1

2
Li
µ,ΣΣ(s

′)kl + Li
µ,Σ [µ(s′)k(s

′ − s)l + µ(s′)l(s
′ − s)k]

− Li
µ,Σµ(s

′)k(s
′ − s)l − Li

µ,Σµ(s
′)l(s

′ − s)k,

f(s′)k =Li
µ,Σµ(s

′)k.

(43)

Note that h(s) is a function that only depends on Σ, µ and is independent of
(s′ − s). Thus∣∣∣∣∫

S
Li
µ,Σ

(
µ(s′)k(s

′ − s)l + µ(s′)l(s
′ − s)k +

1

2
Σ(s′)kl

)
ρ(s′, t|s)ds′

∣∣∣∣
≤∥h(s)kl∥L∞ + ∥f(s)k∥L∞

∫
S
|(s′ − s)l|ρ(s′, t|s)ds′ + ∥f(s)l∥L∞

∫
S
|(s′ − s)k|ρ(s′, t|s)ds′.

Since ∫
S

(|(s′ − s)l|ρ(s′, t|s)ds′ ≤

√∫
S

|(s′ − s)2l ρ(s
′, t|s)ds′

and

∂t

∫
S
(s′ − s)2l ρ(s

′, t|s)ds′

=

∫
(s′ − s)2l∇(µ(s′)ρ(t, s′|s))ds′ + 1

2

∑
i,j

∫
(s′ − s)2l ∂si∂sj (Σ(s

′)ijρ(t, s
′|s))ds′

=−
∫

2(s′ − s)lµ(s
′)lρ(t, s

′|s)ds+ 1

2

∫
Σ(s′)llρ(t, s

′|s)ds′

=

∫
(s′ − s)2l ρ(t, s

′|s)ds′ + ∥µ(s)l∥2L∞ +
1

2
∥Σ(s)ll∥L∞∫

S
(s′ − s)2l ρ(s

′, t|s)ds′ ≤
(
∥µ(s)l∥2L∞ +

1

2
∥Σ(s)ll∥L∞

)
tet,

where the last inequality is due to
∫
S(s

′ − s)2l ρ(s
′, 0|s)ds′ = 0 and the Grownwall

inequality. Hence, one has,∫ j∆t

0

∫
S
|(s′ − s)l|ρ(s′, t)ds′tidt

≤
(
∥µ(s)l∥2L∞ +

1

2
∥Σ(s)ll∥L∞

)∫ j∆t

0

et/2t1/2+idt

≤
(
∥µ(s)l∥2L∞ +

1

2
∥Σ(s)ll∥L∞

)
(j∆t)i+3/2 + o((j∆t)i+3/2).

Therefore,∫ j∆t

0

∫
S
Li
µ,Σ

(
µ(s′)k(s

′ − s)l + µ(s′)l(s
′ − s)k +

1

2
Σ(s′)kl

)
ρ(s′, t|s)ds′tidt

≤ 1

i+ 1
∥h(s)kl∥L∞ (j∆t)i+1 +O(∆ti+3/2),
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which implies ∣∣∣(Σ̂i(s)
)
kl
− Σkl(s)

∣∣∣ ≤ LΣ∆ti + o(∆ti),

where

LΣ =

∑i
j=1 |aj |ji+1

(i+ 1)!
∥h(s)kl∥L∞ , with h(s)kl defined in (43). (44)

For the estimate of
∥∥∥∂sl (Σ(s))kl − ∂sl

(
Σ̂i(s)

)
kl

∥∥∥
ρ
, first one can obtain the

following equation similar to (42),

∂sl

(
Σ̂i(s)

)
kl

= ∂slΣkl(s) +
1

∆ti!

i∑
j=1

aj

∫ j∆t

0

∂slp(s, t)t
idt

where

p(s, t) =

∫
S
h(s′)kl + f(s′)k(s

′ − s)l + f(s′)l(s
′ − s)kds

′,

with h, f defined in (43). Therefore,∑
l

∥∥∥∂sl (Σ(s))kl − ∂sl

(
Σ̂i(s)

)
kl

∥∥∥2
ρ

=
∑
l

(
1

∆ti!

)2 ∫
S

 i∑
j=1

aj

∫ j∆t

0

∂slp(s, t)t
idt

2

ρ(s)ds

≤
∑
l

(
1

∆ti!

)2

i

i∑
j=1

a2j

∫
S

(∫ j∆t

0

∂slp(s, t)t
idt

)2

ρ(s)ds

≤
(

1

∆ti!

)2

i

i∑
j=1

a2jj∆t

∫ j∆t

0

(∑
l

∫
S
∂slp(s, t)

2ρ(s)ds

)
t2idt

≤
(

1

∆ti!

)2

i

i∑
j=1

a2jj∆t

∫ j∆t

0

∥∇p(t)∥2ρ t
2idt

(45)

Next, we will estimate ∥∇p(t)∥2ρ. Note that p(s, t) satisfies the following forward
Kolmogorov equation [16],

∂tp(s, t) = Lµ,Σp(s, t), with p(s, 0) = h(s)kl. (46)

By Lemma 6.1, one has

1

2
∂t ∥p∥2ρ = ⟨Lµ,Σp, p⟩ρ ≤ −λmin

2
∥∇p∥2ρ

1

2
∂t ∥∇p∥2ρ = ⟨∇Lµ,Σp,∇p⟩ρ ≤ C∇µ,∇Σ

2
∥∇p∥2ρ

(47)
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Multiply
C∇µ,∇Σ

λmin
to the first equation gives

∂t

(
C∇µ,∇Σ

λmin
∥p∥2ρ + ∥∇p∥2ρ

)
≤ 0,

which implies that

∥∇p(t)∥2ρ ≤ C∇µ,∇Σ

λmin
∥p(0)∥2ρ + ∥∇p(0)∥2ρ =

C∇µ,∇Σ

λmin
∥hkl∥2ρ + ∥∇hkl∥2ρ .

Inserting the above inequality back to (45), one has,∑
l

∥∥∥∂sl (Σ(s))kl − ∂sl

(
Σ̂i(s)

)
kl

∥∥∥2
ρ

≤
(

1

∆ti!

)2(
C∇µ,∇Σ

λmin
∥hkl∥2ρ + ∥∇hkl∥2ρ

)
i

i∑
j=1

a2jj∆t

∫ j∆t

0

t2idt

=

(
1

∆ti!

)2(
C∇µ,∇Σ

λmin
∥hkl∥2ρ + ∥∇hkl∥2ρ

)
i

i∑
j=1

a2j
j2i+2

2i+ 1
∆t2i+2,

which implies √∑
l

∥∥∥∂sl (Σ(s))kl − ∂sl

(
Σ̂i(s)

)
kl

∥∥∥2
ρ
≤ LΣ,ρ∆ti

where

LΣ,ρ =

∑i
j=1 |aj |ji+1

(i+ 1)!
(i+ 1)

(√
C∇µ,∇Σ

λmin
∥hkl∥ρ + ∥∇hkl∥ρ

)
, (48)

with h(s)kl defined in (43).

Lemma 6.5. Under Assumption 1, for µ̂i(s), Σ̂i(s) defined in (17), one has〈
(Lµ,Σ − Lµ̂i,Σ̂i

)f, g
〉
ρ
≤ Dµ,Σ,λmin

∆ti ∥f∥L∞ ∥∇g∥ρ+
dLΣ

2
∆ti ∥∇f∥ρ ∥∇g∥ρ+dLµ∆ti ∥∇f∥ρ ∥g∥ρ

where Lµ, LΣ are defined in (41) and (44), respectively, and Dµ,Σ,λmin is a
constant depending on µ,Σ, λmin and the dimension d of S, which are defined in
(49).

Proof. By extending the the inner product, one has〈
(Lµ,Σ − Lµ̂i,Σ̂i

)f, g
〉
ρ

=
∑
k

∫
(µ− µ̂i)k∂skfgρds−

1

2

∑
k,l

∫
∂sl

[
(Σ− Σ̂i)klfρ

]
∂skgds

≤dLµ∆ti ∥∇f∥ρ ∥g∥ρ −
1

2

∑
k,l

∫
∂sl

[
(Σ− Σ̂i)klfρ

]
∂skgds.
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In addition, one has,∑
k,l

∫
∂sl

[
(Σ̂− Σ)klfρ

]
∂skgds

=
∑
k,l

∫
∂sl(Σ̂− Σ)klfρ∂skgds+

∫
(Σ̂− Σ)kl∂slfρ∂skgds+

∫
(Σ̂− Σ)klf∂slρ∂skgds

≤∥f∥L∞

(
max

k

∑
l

∥∥∥∂sl(Σ̂− Σ)kl

∥∥∥
ρ

)(∑
k

∥∂skg∥ρ

)
+ λmax ∥∇f∥ρ ∥∇g∥ρ

+max
k,l

∥∥∥(Σ̂− Σ)kl

∥∥∥
L∞

∥f∥L∞

(∑
l

∥∥∥∥∂slρρ
∥∥∥∥
ρ

)(∑
k

∥∂skg∥ρ

)

≤d ∥f∥L∞

(
max

k

√∑
l

∥∥∥∂sl(Σ̂− Σ)kl

∥∥∥2
ρ

)
∥∇g∥ρ + λmax ∥∇f∥ρ ∥∇g∥ρ

+ dmax
k,l

∥∥∥(Σ̂− Σ)kl

∥∥∥
L∞

∥f∥L∞

∥∥∥∥∇ρ

ρ

∥∥∥∥
ρ

∥∇g∥ρ

where
λmax = the maximum absolute eigenvalue of (Σ̂− Σ).

By the Gershgorin circle theorem, one has

λmax ≤ max
k

∑
l

|(Σ̂− Σ)kl| ≤ dLΣ∆ti.

By applying Theorem 1.1 of [2], one has,∥∥∥∥∇ρ

ρ

∥∥∥∥
ρ

≤ 1

λmin
∥µ+∇ · Σ∥ρ

Therefore, one has∑
k,l

∫
∂sl

[
(Σ̂− Σ)kleρ

]
∂skeds

≤
(
dLΣ,ρ ∥f∥L∞ ∥∇g∥ρ + dLΣ ∥∇f∥ρ ∥∇g∥ρ +

dLΣ

λmin
∥µ+∇ · Σ∥ρ ∥f∥L∞ ∥∇g∥ρ

)
∆ti

=
[
2Dµ,Σ,λmin ∥f∥L∞ ∥∇g∥ρ + dLΣ ∥∇f∥ρ ∥∇g∥ρ

]
∆ti

where

Dµ,Σ,λmin
=

d

2
LΣ,ρ +

dLΣ

2λmin
∥µ+∇ · Σ∥ρ . (49)

where LΣ,ρ, LΣ are defined in (48) and (44).
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Proof of Theorem 3.6

Proof. First note that V, V̂ satisfies,

Lµ,ΣV = βV − r, Lµ̂,Σ̂V̂ = βV̂ − r

Substracting the second equation from the first one and let e(s) = V (s)− V̂ (s)
gives,

βe = Lµ,Σe+ (Lµ,Σ − Lµ̂,Σ̂)V̂

Multiply the above equation with e(s)ρ(s) and integrate it over s ∈ S, one has,

β ∥e∥2ρ = ⟨Lµ,Σe, e⟩ρ +
〈
(Lµ̂,Σ̂ − Lµ,Σ)V̂ , e

〉
ρ

≤− λmin

2
∥∇e∥2ρ + dDµ,Σ,λmin

∆ti
∥∥∥V̂ ∥∥∥

L∞
∥∇e∥ρ +

d

2
LΣ∆ti

∥∥∥∇V̂
∥∥∥
ρ
∥∇e∥ρ

+
d

2
Lµ∆ti

∥∥∥∇V̂
∥∥∥
ρ
∥e∥ρ

≤− (
λmin

2
− d

2
LΣ∆ti) ∥∇e∥2ρ +

(
dDµ,Σ,λmin

∆ti

β
∥r∥L∞ +

d

2
LΣ∆ti ∥∇V ∥ρ

)
∥∇e∥ρ

+
d

2
Lµ∆ti ∥∇e∥ρ ∥e∥ρ +

d

2
Lµ∆ti ∥∇V ∥ρ ∥e∥ρ

≤−
(
λmin

2
− d

2
LΣ∆ti − d2

4β
L2
µ∆t2i

)
∥∇e∥2ρ +

β

2
∥e∥2ρ +

d2

4β
L2
µ∆t2i ∥∇V ∥2ρ

+

(
d

β
Dµ,Σ,λmin ∥r∥L∞ +

d

2β
LΣCr,∇µ,∇Σ

)
∆ti ∥∇e∥ρ

≤−
(
λmin

2
− d

2
LΣ∆ti − d2

4β
L2
µ∆t2i

)
∥∇e∥2ρ +

√
λminC1 ∥∇e∥ρ +

β

2
∥e∥2ρ + C2

2 ,

(50)
where

C1 =
d∆ti

β
√
λmin

(
Dµ,Σ,λmin

∥r∥L∞ +
1

2
LΣCr,∇µ,∇Σ

)
, C2 =

d∆ti

2β3/2
LµCr,∇µ,∇Σ

with Dµ,Σ,λmin
defined in (49), Lµ, LΣ defined in (41), (44), and Cr,∇µ,∇Σ defined

in (38). Here the first inequality applies Lemma 6.5, the second inequality uses

∇V̂ = ∇V −∇e and
∥∥∥V̂ ∥∥∥

L∞
≤ 1

β ∥r∥L∞ , and the last inequality applies Lemma

6.3. Under the assumption that

d

2
LΣ∆ti +

d2

4β
L2
µ∆t2i ≤ λmin

4

the RHS of (50) can be bounded by

RHS of (50) ≤ C2
1 + C2

2 +
β

2
∥e∥2ρ
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which implies

∥e∥ρ ≤
√

2

β
(C1 + C2) =

√
βCr,µ,Σ,λmin

+ Cr,µ,Σ

β2
∆ti.

where

Cr,µ,Σ,λmin
=

d
√
2√

λmin

(
Dµ,Σ,λmin

∥r∥L∞ +
1

2
LΣCr,∇µ,∇Σ

)
, Cr,µ,Σ =

d√
2
LµCr,∇µ,∇Σ

(51)
with Dµ,Σ,λmin

defined in (49), Lµ, LΣ defined in (41), (44), and Cr,∇µ,∇Σ defined
in (38).
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[22] Corentin Tallec, Léonard Blier, and Yann Ollivier. Making deep q-learning
methods robust to time discretization. In International Conference on
Machine Learning, pages 6096–6104. PMLR, 2019.

[23] Haoran Wang, Thaleia Zariphopoulou, and Xun Yu Zhou. Reinforcement
learning in continuous time and space: A stochastic control approach. The
Journal of Machine Learning Research, 21(1):8145–8178, 2020.

[24] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford,
Dario Amodei, Paul Christiano, and Geoffrey Irving. Fine-tuning language
models from human preferences. arXiv preprint arXiv:1909.08593, 2019.

37


	Introduction
	Setting
	A PDE-based Bellman Equation (PhiBE)
	Bellman equation
	A PDE-based Bellman equation
	Deterministic Dynamics
	Stochastic dynamics


	Model-free Algorithm for continuous-time Policy Eveluation
	Galerkin Method
	Model-free Galerkin method for PhiBE

	Numerical experiments
	Deterministic dynamics
	Stochastic dynamics

	Proofs
	Proof of Theorem 3.1.
	Proof of Theorem 3.3
	Proof of Theorem 3.4
	Proof of Theorem 3.5
	Proof of Theorem 3.6


