Bayesian Band t:

- Bayesian measwe: using the observation data to establish the belief of the hyperparameters of a distribution.
egg.

$$
X \sim N(\underset{T}{\mu}, \sigma)
$$

unknown.
observation: $x_{1}, x_{2}, \cdots, x_{n}$
Goal: Based on the observation, derve a belief for μ.
$\mu \sim \rho(\mu)$

At the beginning of round i, we heme prior measure

$$
u \sim N\left(M_{i-1}, \sigma_{i-1}\right)
$$

After one observation x_{i},

$$
\begin{aligned}
& \mu_{i}=\left(\frac{1}{\sigma^{2}}+\frac{1}{\sigma_{i-1}^{2}}\right)^{-1}\left[\frac{x_{i}}{\sigma^{2}}+\frac{\mu_{i-1}}{\sigma_{i-1}^{2}}\right] \\
& \sigma_{i}^{2}=\left(\frac{1}{\sigma^{2}}+\frac{1}{\sigma_{i-1}^{2}}\right)^{-1}
\end{aligned}
$$

we update the posterior. maxesme $M \sim N\left(\mu_{i}, \sigma_{i}\right)$
or equivalently, before any observations, with prior measure $N\left(\mu_{0}, 0_{0}\right)$ \& after n observations x_{1}, \cdots, x_{n}, we have empirical mean $\bar{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$, then the posterior measure of $n \sim N\left(\mu_{n}, \sigma_{n}\right)$ will be

$$
\begin{aligned}
& \mu_{n}=\left(\frac{n}{\sigma^{2}}+\frac{1}{\sigma_{0}^{2}}\right)^{-1}\left[\frac{n}{\sigma^{2}} \bar{u}+\frac{1}{\sigma_{0}^{2}} \mu_{0}\right] \\
& \sigma_{n}^{2}=\left(\frac{n}{\sigma^{2}}+\frac{1}{\sigma_{0}^{2}}\right)^{-1}
\end{aligned}
$$

- Bayesicen for Binomial distribution $\begin{cases}1 & \text { w.p.p. } \\ 0 & \text { w.p.1-p. }\end{cases}$

$$
p \sim \frac{\text { Beta }\left(a_{0}, b_{0}\right),}{\text { prior }} \rightarrow \mathbb{E}[p]=\frac{a_{0}}{a_{0}+b_{0}}
$$

After n observations, we can update the posterior measme for P : $P \sim \operatorname{Beta}\left(a_{n}, b_{n}\right) \leftarrow$ posterior.

$$
\left\{\begin{array}{l}
a=a_{0}+\sum_{j=1}^{n} x_{j} \\
b=n-\sum_{j=1}^{n} x_{j}+b_{0}
\end{array} \quad \Rightarrow \mathbb{E}[p]=\frac{a_{0}+\sum_{j=1}^{n} x_{j}}{n+a_{0}+b_{0}}\right.
$$

or equivaluatly
\rightarrow. with prior $p \sim$ Beta $\left(a_{i-1}, b_{i-1}\right)$ \& observation x_{i} posterior $p \sim \operatorname{Befa}\left(a_{i-1}+x_{i}, 1-x_{i}+b_{i-1}\right)$

Thomsonsampling I-armed veward.
e.g. $\quad x_{0}=\frac{1}{2}$
$x_{1} \sim \operatorname{Binomial}(p)$ unknow stert with $p \sim \operatorname{Befa}(1,1)$
At the beginniy of round t, we have prior masure of $p \sim \operatorname{Beta}\left(a_{t-1}, b_{t-1}\right) \rightarrow$ sample from $\operatorname{Beta}\left(a_{t-1}, a_{t-1}\right) \rightarrow P_{t}$

- If $P_{t}>\frac{1}{2} \Rightarrow$ pull unknown arm
\Rightarrow update the posterior measue of P bosed on the observation $x_{t}: \quad a_{t}=a_{1+1}+x_{t}$

$$
b_{t}=\left(-x_{t}+b_{t-1}\right.
$$

- If $P_{t}<\frac{1}{2} \Rightarrow$ proll known arm

$$
\Rightarrow\left\{\begin{array}{l}
a_{t}=a_{t-1} \\
b_{t}=b_{t-1}
\end{array}\right.
$$

$H^{-(w)} \rightarrow$ Try TS for/ Normal reward \& Bionomial rewand with 2-curmed differents \&differe prior.

Can we dobetter than TS based on the posterior measure ff we know how many rounds we left?

- Bayesian optimal policy

$$
\begin{aligned}
& x_{0}=\frac{1}{2} \\
& x_{1} \sim \text { Binomial }(\stackrel{p}{\rho})
\end{aligned}
$$

Q: At the begmning of round n, I have prior measure for $p \sim \operatorname{Beta}\left(a_{n-1} b_{n-1}\right)$, what is the best policy wecording to this postervor?

$$
\begin{aligned}
\mathbb{E}\left[x_{n}\right]=\mathbb{E}[p]=\frac{a_{n-1}}{b_{n-1}+a_{n-1}} & 0 \frac{1}{2} \\
& { }^{n}>" \quad \text { arm } 1 \\
& { }^{v}<1 \quad \text { arm } 0 .
\end{aligned}
$$

$e . q, a_{n-1}=b_{n-1}-1$, then it is the sane to pull uukerown arm or known arm
Before $V(a, b, 1)$ as the optimal expected cumulative reveal with n rounds left.

$$
V(a, b, 1)=\max \left\{\frac{a_{n-1}}{b_{n-1}+a_{n-1}}, \quad \frac{1}{2}\right\} .
$$

Q: At the begmning of round $n-1, I$ have prior measure for $p \sim \operatorname{Beta}\left(a_{n-2}, b_{n-2}\right)$, what is the best policy according to this postervor?

If arm 0 is pulled

$$
V^{2}\left(a_{n-2}, b_{n-1}, 2\right)=\frac{1}{2}+V\left(a_{n-2}, b_{n-2}, 1\right)
$$

If arm 2 is pulled:

$$
V^{\prime}\left(a_{n-2}, b_{n-2}, 2 .\right)=\frac{a_{n-2}}{b_{n-2}+a_{n-2}}+\mathbb{E}\left[V \left(a_{n-1}^{\left.\left.a_{n}, b_{n-1}, 1\right)\right]}\right.\right.
$$

The posterior measure of p after polling arm 1 at round $n-1$

If arm I is pulled at round $a-1$:

$$
\left\{\begin{array}{l}
1 \text { w.p. } p \rightarrow \text { posterior p } \sim \operatorname{Beta}\left(a_{n-2}+1, b_{n-2}\right) \\
0 \text { w.p. } 1-\rho \rightarrow \text { posterior } p \sim \operatorname{Beta}\left(a_{n-2}, b_{n-2}+1\right)
\end{array}\right.
$$

$$
\begin{aligned}
V^{\prime}\left(a_{n-2}, b_{n-2}, 2\right)=\frac{a_{n-2}}{b_{n-2}+a_{n-2}} & +\frac{a_{n-2}}{b_{n-2}+a_{n-2}} \cdot V\left(a_{n-2}+1, b_{n-2}, 1\right) \\
& +\frac{b_{n-2}}{b_{n-2}+a_{n-2}} V\left(a_{n-2}, b_{n-2}+1,1\right) \\
V(a, b, 2)= & \max \left\{V^{\prime}, V^{2}\right\}
\end{aligned}
$$

e.g. If $a_{n-2}=b_{n-2}=1$

$$
\begin{aligned}
V^{\prime}(a, b, 2) & =\frac{1}{2}+\frac{1}{2} V(2,1,1)+\frac{1}{2} V(1,2,1) \\
& =\frac{1}{2}+\frac{1}{2}\left(\max \left\{\frac{2}{3}, \frac{1}{2}\right\}+\max \left\{\frac{1}{3}, \frac{1}{2}\right\}\right) \\
& =\frac{1}{2}+\frac{1}{2}\left(\frac{2}{3}+\frac{1}{2}\right)=\frac{1}{2}+\frac{1}{2} \frac{4+3}{6}=\frac{1}{2}+\frac{7}{12}=\frac{13}{12} \\
V^{2}(a, b, 2) & =\frac{1}{2}+V(1,1,1)=\frac{1}{2}+\max \left\{\frac{1}{2}, i\right\}=1
\end{aligned}
$$

If 2 rounds left, even if the expectation is the same for 2 arms, it will automatically prefer to explore the unknown arm.

In general: $\quad V(a, b, n)$

$$
=\max \left\{\frac{1}{2}+V(a, b, n-1), \quad \frac{a}{a+b}+\frac{a}{a+b} V(a+1, b, n-1)+\frac{b}{a+b} V(a, b+1, n-1)\right\} .
$$

with $V(a, b, 0)=0$
Q : what's the complexity to obtain the optimal Basion poling for MAB wa horizon n ?

$$
O\left(n^{3}\right)
$$

If If is k-armed bandre prob, $\Rightarrow O\left(n^{3 k}\right)$.
Q

1. Derive a limiting $H B$ eq \Rightarrow melopend of n "continuous-in-time limit for Bayesian Bandits. z-Izzo -King FPMCR 23"

$$
\begin{aligned}
& t=\frac{\hat{i}}{n}, \quad \hat{a}=\frac{1}{n} a, \quad \hat{b}=\frac{1}{n} b, \quad \hat{V}(\hat{a}, \hat{b}, t)=\frac{1}{a} v(a, b, i), \quad a=n \hat{a}, \quad b=n \hat{b} \\
& a+1=n \hat{a}+1=n\left(\hat{a}+\frac{1}{n}\right) . \\
& \left.\hat{v}=\operatorname{lox}(\hat{a}, t) / \frac{1}{2} \frac{1}{n}+\hat{v}\left(\hat{a}, \hat{b}, t-\frac{1}{n}\right), \frac{1}{n} \frac{\hat{a}}{\hat{a}+\hat{b}}+\frac{\hat{a}}{\hat{a}+\hat{b}} \hat{v}\left(\vec{a}+\frac{1}{n}, \hat{b},+\frac{1}{n}\right)+\frac{\hat{b}}{\hat{a}+\hat{b}} \hat{v}\left(\hat{a}, \hat{b}+\frac{1}{n}, t-\frac{-1}{n}\right)\right\} . \\
& \frac{\hat{v}(\hat{a}, \hat{b}, t)-\hat{v}\left(\hat{a}, \hat{b},+-\frac{1}{n}\right)}{\frac{1}{n}}=\max \left\{\frac{1}{2}, \frac{\hat{a}}{\hat{a}+\hat{b}}+\frac{1}{\frac{1}{n}} \frac{\hat{a}}{\hat{a}+\hat{b}}\left[\hat{v}\left(\hat{a}+\frac{1}{n}, \hat{b},+\frac{1}{n}\right)-\hat{v}\left(\hat{a}, \hat{b},+\frac{1}{n}\right)\right]\right. \\
& \left.+\frac{\hat{5}}{\frac{1}{n}} \frac{\hat{\jmath}}{\vec{a}-\hat{b}}\left[\hat{v}\left(\hat{a}, \hat{b}+\frac{1}{n},+\frac{1}{n}\right)-\hat{V}\left(\hat{a}, \hat{b},+\frac{1}{n}\right)\right]\right\} \\
& \begin{aligned}
\frac{\hat{v}(\hat{a}, \hat{b}, t)-\hat{v}\left(\hat{a}, \hat{b}, t-\frac{1}{n}\right)}{\delta_{t}}=\frac{1}{2}+\max \left\{0, \frac{\hat{a}}{\hat{a}+\hat{b}}-\frac{1}{2}\right. & +\frac{\hat{a}}{\hat{a}+\hat{b}} \frac{\hat{V}\left(\hat{a}+\frac{1}{n}, \hat{b},+\frac{1}{n}\right)-\hat{v}\left(\hat{a}, \hat{b},+-\frac{1}{n}\right)}{\delta_{a}} \\
& \left.+\frac{\hat{b}}{\hat{a}+\hat{b}} \frac{\hat{v}\left(\hat{a}, \hat{b}+\frac{1}{n},+\frac{1}{n}\right)-\hat{v}\left(\hat{a}, \hat{b},+\frac{1}{n}\right)}{\delta_{0}}\right\}
\end{aligned} \\
& \begin{aligned}
\frac{\hat{v}(\hat{a}, \hat{b}, t)-\hat{v}\left(\hat{a}, \hat{b}, t-\frac{1}{n}\right)}{\delta_{t}}=\frac{1}{2}+\max \left\{0, \frac{\hat{a}}{\hat{a}+\hat{b}}-\frac{1}{2}\right. & +\frac{\hat{a}}{\hat{a}+\hat{b}} \frac{\hat{v}\left(\hat{a}+\frac{1}{n}, \hat{b},+\frac{1}{n}\right)-\hat{v}\left(\hat{a}, \hat{b},+-\frac{1}{a}\right)}{\delta_{a}} \\
& \left.+\frac{\hat{b}}{\hat{a}+\hat{b}} \frac{\hat{v}\left(\hat{a}, \hat{b}+\frac{1}{n},+\frac{1}{n}\right)-\hat{v}\left(\hat{a}, \hat{b},+\frac{1}{n}\right)}{\delta_{0}}\right\}
\end{aligned}
\end{aligned}
$$

Detme function $\hat{V}(a, b, t)$ with $t \in(0,1)$. then. as $d_{t}, d_{a}, d_{b} \rightarrow 0$

$$
\begin{aligned}
& \partial_{z} \hat{v}=\frac{1}{2}+\max \{0, \underbrace{\hat{a}+\hat{b}}_{\frac{11}{\frac{11}{a}}(\hat{a}, \hat{b})} \\
& \left.\alpha_{t} \hat{L}+p(\hat{a}, \hat{b}) \partial_{\hat{a}} V+(1-p(\hat{a}, \hat{b})) \partial_{\hat{b}} V\right\} \\
& \max _{\pi \in[a, n\}}\left(p(\hat{a}, \hat{b})-\frac{1}{2}+\hat{p}(\hat{a}, \hat{b}) \partial_{\hat{a}} V+(1-p(\hat{a}, \hat{b})) \partial_{\hat{b}} V\right) T(\hat{a}, \hat{b}, t)
\end{aligned}
$$

exact solution or numerical solution (nodep of n).
open prob: ©, what therretial guarantee. can we have for $p=\frac{a+a_{0}}{b+b_{0}}$ this approximated sole?
(3) for farmed bandit with no exact solution for HJB eqn, any method to find the sola efficterilly?
approximated Bayesram-optimal policy. (obtain HJB solution $O(x, y, t)$).
at round i, you arrive at state a, b

$$
\begin{aligned}
& -\dot{t}=\frac{n-i}{n}, x=\frac{a}{n}, \quad y=\frac{b}{n} \\
& -\hat{V}(x, y, t) \Rightarrow \frac{x}{x+y}-\frac{1}{2}+\frac{x}{x+y} \alpha_{A} \hat{V}+\frac{y}{x+y} \partial_{y} \hat{V}=f
\end{aligned}
$$

$\begin{array}{ll}\text { - If } t>0 \Rightarrow \text { pull unkerom arm }>\text { observe reward 1. } & a \leftarrow a+1 \\ & b \in b\end{array}$

$$
\begin{aligned}
\cdots \quad 0, & a<a \\
& b \in b+1
\end{aligned}
$$

If $f<0 \Rightarrow$ pull known arm
$i \leftarrow i-1$

Infinite horizon with discount factor γ

$$
\begin{aligned}
& V(a, b)=\max \left\{\lambda+\gamma V(a, b), \frac{a}{a+b}+\gamma\left[\frac{a}{a+b} V(a+1, b)+\frac{b}{a+b} V(a, b+1)\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& S_{1}^{A=0}=S_{0} \\
& V(s)=\max _{a}\{r(0, s)+\gamma V(s), r(1, s)+\gamma[P(s,=0) \mid \cdots) V(\cdots) \\
& \left.\left.+p\left(s_{1}=(1) \cdot\right) v(\cdots)\right]\right\} \\
& V(s)=\max _{a}\left\{r(s, a)+\gamma \mathbb{E}\left[V\left(s_{1}\right) \mid s_{0}=s, A_{0}=a\right]\right\} \\
& =\max _{\sum_{a}^{s} \pi_{a} \in[0,1]}\left[\sum_{a \in \mathbb{A}}\left(r\left(s_{1} a\right)+\gamma \mathbb{E}\left[V\left(s_{1}\right) \mid s_{0}=s, A_{0}=a\right]\right) \pi_{a}\right] \\
& =\max _{\pi} \underset{\substack{a, \pi \\
s_{1} \sim \operatorname{cop}(s) \\
\mathbb{E}\left(s 0_{0}, s s_{0}\right)}}{\mathbb{E}}\left[r(s, a)+\nu V\left(s_{1}\right) \quad \mid s_{0}=s\right] \\
& { }^{6} \text { for wireds, a prob es tributber for } a \text {. }
\end{aligned}
$$

Naively, one can cat the mitinite horizon to finite norizen \& then derive the sole backwards, but as $\gamma \rightarrow 1$, the horizon will be larger. open prob: (3) Can we derive a similar limitary PDE by rescaling the parameters
K-armed prob:

$$
V\left(\alpha_{1}, \beta_{1}, \cdots, \alpha_{k}, \beta_{k}\right)=\max _{j}\left\{\frac{\alpha_{j}}{\partial_{j+}+\beta_{j}}+V\left(\cdots \gamma_{j+1}, \beta_{j} ; \cdots\right) \frac{\partial_{j}}{\beta_{j}+\partial_{j}}+V\left(\cdots \alpha_{j}, p_{j}, \cdots\right) \frac{\beta_{j}}{\sigma_{j}+\beta}\right\}
$$

$$
\left\{\begin{array}{l}
|r|<1 \Rightarrow \sum_{t=T}^{\infty} \gamma^{\Phi t} r\left(s_{t}, a_{t}\right) \leqslant \frac{\gamma^{\top}}{1-\gamma} \leqslant \varepsilon \Rightarrow T \sim 0\left(\frac{1}{1-\gamma}\right) \\
O\left(\left(\frac{1}{1-\nu}\right)^{2 k}\right)
\end{array}\right.
$$

*Gittins index:

- when $S \in \mathbb{Z}_{+}^{2 k}$, Instead of viewing it as a coupled system, one decouple it by giving each arm $\frac{\text { an equitant value at the current tate }}{T}$ Gitins modex

Let $g(\alpha, \beta, \lambda)$ be the Gittins index for Binomial reward with prior measure Beta $(\alpha, \beta) \&$ drount factor γ,

$$
\text { optimal policy }=\underset{k \in[K]}{\arg \max }\left\{g\left(\partial_{k}, \beta_{k}, \nu\right)\right\}
$$

- View k-armed Banda as k ore-armed banda prob.

For one-am bandit prob with prior maasme Beta (α, β)
U.S. known arm with deterministic reword A.

The gittms index is the deterministic arm reward such that it is equivaleat to pull the known arm \& untaroun corn

One algo to calculate $g(S)$
Iaitralizath: set $\bar{g} \& q$.
while $\bar{g}-q>\varepsilon \Rightarrow \operatorname{set} g=\frac{\bar{g}+g}{2}$
open prob (3) \rightarrow solve the optimal policy for one-armed bund te with may reduce the an minnow arm with state s \& known arm with $r=g$ cont of thess step. If the optimal policy is to pull the unkair urn

$$
\begin{aligned}
& q=g \quad-\quad \text { - iknown arm } \\
& \bar{g}=9 .
\end{aligned}
$$

(4) Open prob (4) For a couple HTB, can we decouple it with similar idea?

