
Bayesian
Bandit :

-> Bayesian measure : using the observation data to establish

the belief of the hyperparameters of
a

distributionn.
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or equivalently , before any
observations

,

with prior measure NIMO
,To

& after n observations X .. .... Xn
, we have empirical mean it

Then the posterior measure of UNCUn . (n) will be

Mn = (+ + M
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Binomial distribution &1 up-p.
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After in observations , we can update the posterior measure for :

~ Beta (An , bu) - posterior
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or equivalently
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I-armed record
.

·Thomson Sampling
-
/o = Ie. g. Y unknow
X

,

~ Binomial (p) start with p-Beta ( 1 , 1)

At the beginning of
round , we have prior measure

of p ~ Beta (a be) -> sample from Bata
(, ) ->PE

· If PEx 1 = pull unknow
arm

-> update the posterior
measure of p based on

the observation : C
= An X ->

bt
.

= 1-x++ bz - 1

·If PETE =) pull known arm

=G =At
Normal reward & Bionomial reward with

H-> Try TS or

I differento differe priorc-armed
I



Can we do better thanTS
based on

the posterior measure of we know

how many
rounds we left ?

·

Bayesian optimal policy

Xo = I
unknow

X
,

~ Binomial (p)

Q : At the beginning of
round ,

I have prior

measure for pr
Beta s Grbn what is

~

the best policy according to this posterior ?

# [X] =#[] =

an
,

O E

> " arm1

" <I arm 0

e. g . Gerber ,
then itis the same

to

pull unknown arm
or known arm

Define Usa . b , 1) as the optional expected cumulative recond with a rounds left.

V ( 9
, b ,
1) = max an ·
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Q : At the beginning of
round nt

,
I have prior

measure for pr
Beta <Ans ,

bas) ,

what is

the best policy according to this posterior ?



If arm o is pulled

V (Anzbas
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burn
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↑

The posterior measure of p after

pulling arm 1 at round no

It arms is pulled at rounda :

1 w . p . P ->. posterior
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e . g. If ann = ban =

v (a , b , 2)
= E + I V(2 ,

1
,
1) + IV (1 ,

2
, 1)

= I + 1 (max 93 ,
2) + max 35

,
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=i + 1(5 +2) = 1 + 1* = 1 + 7 = =

v (9 ,
b
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ofarounds left , even of the expectation is the same for
2 arms,

it will automatically prefer to explore the unknown arm.

In general : V (a , b , n)

= max + V ( a ,b , -) , b /G , b, + Van
With19 . b , 0) = 0

Q : What's the complexity to obtain the optined Baysian policy

for MAB with horizon n ?

OCU)

If It is k-armed bandit prob ,
=> O(U).

Q How to reduce the computational cost

1
.

Derive a limiting HJB equ => independ ofa

"continuous-in-time limit for Bayesian Bandits.
2-Iz0- Ying MLR 23
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+ a, b, a, bi
,
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- b = n5

I

a+ 1 = n+ 1 = u(2+5)
.
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as St
, Ja ,
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s
M
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T=[0 ,7]

I
solution or numerical solution (indep of n).

↑ open prob : O
What theoretial guarantee can we have for

J =

At Co this approximated sol ?-

I b+ bo

& for kearmed
bandit with no

exact solution for

HB equ , any
method so find the solu efficiently ?



approximated Bayesian-optimal policy· (obtain MJB solution xy ,+).

at round i, you arrive
at state a

,
b

- t= = y

-

(x , y ,t) = *
y

- 1 + y + *6 = +

- If > 0 => pull unknow
arm - Observe reward 1

.
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-
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be b

b+ b+

i = i -
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Infinite horizon with discount factor &

X
via i b) = maxx + 5 19 , b) ,

+ 0 cat , b) +*Vie])
(4)
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S -2 A= 1A : =2,= .
res en

= (8) [ ↓

r(0 , s) = X

gA = So

V (s) =

mm < r(0, S) +JV(S)
,

ru , s + E [P(SEI = ( V

+ P(s, (11 . >V.. ) Y]
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,

A0 =a] 3A

I max [= (r(5 , a) + UE[VIS) (So= S
,
Ar =a]]πa]

O A

= May E [ r(s , a) + 0 V (Si) (So = s]
I articals)

SINP(S/90, 50)&
for fixed s , a prob distribution for a

Naively , one can out the infinite horizon to finite horizer
& then

deve the soln
backwards ,

but as +1 ,
the horizon will be larger.

j

open prob : C Can we drive a similar limiting PPE by
rescaling

the parameters

&



k-armed prob :
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* Gittins index :

2K
-

When SE+, Instead of viewing it as a coupled system , one

decouple it by giving each arm an equivant value at their current state
-

cits mdex

Let g(d . Bird be the Gitting index for Bionomial reward
with prior

Measure Betall, B) & discount factor 8,

optimal policy- argmax & 9 (t , Po . r)
k + [K]

-

View k-armed Bandit asK one-armed bandit prob.

For one-arm bandit prob with prior
measure Befald&S

U . S. known arm with deterministic reward X.

optimalum - g(6, 2)
measures the value of this arm

· <
u0 -

-I :-anx



The Gittons index is the deterministic arm reward such that

it is equivalent to pull the known arm & unknown arm

one algo to calculate g(s)

Initialization: Set 5 & A, set g=while j -

f)
=

solve the optimal policy for
one-armed bandit

with

open prob + h
an unknow arm with states of known arm

with r=

&

may reduce
the

cost of the step . If the optioned policy is to pull
the unknowarm

f = S -

- known an

-

- -

-

=9 .9

can we decouple it with

& open prob For a couple HTB .

similar idea ?


